Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions

Abstract

The yeast protein Set1p, inactivation of which alleviates telomeric position effect (TPE), contains a conserved SET domain present in chromosomal proteins involved in epigenetic control of transcription1,2. Mec3p is required for efficient DNA–damage–dependent checkpoints at G1/S, intra–S and G2/M (refs 3, 4,5,6 and 7). We show here that the SET domain of Set1p interacts with Mec3p. Deletion of SET1 increases the viability of mec3Δ mutants after DNA damage (in a process that is mostly independent of Rad53p kinase, which has a central role in checkpoint control8,9) but does not significantly affect cell–cycle progression. Deletion of MEC3 enhances TPE and attenuates the set1Δ–induced silencing defect. Furthermore, restoration of TPE in a set1Δ mutant by overexpression of the isolated SET domain requires Mec3p. Finally, deletion of MEC3 results in telomere elongation, whereas cells with deletions of both SET1 and MEC3 do not have elongated telomeres. Our findings indicate that interactions between SET1 and MEC3 have a role in DNA repair and telomere function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of the SET domain with Mec3p.
Figure 2: The set1Δ1 mutation partially rescues ultraviolet and γ–ray sensitivity of checkpoint mutant strains.
Figure 3: Analysis of G1 and G2 DNA–damage checkpoints.
Figure 4: Mec3p reduces TPE.
Figure 5: Mec3p and Set1p regulate telomere length in opposite directions.

Similar content being viewed by others

References

  1. Nislow, C., Ray, E. & Pillus, L. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular mechanisms. Mol. Biol. Cell 8, 2421–2436 (1997).

    Article  CAS  Google Scholar 

  2. Jenuwein, T., Laible, G., Dorn, R. & Reuter, G. SET domain proteins modulate chromatin domains in eu– and heterochromatin. Cell. Mol. Life Sci. 54, 80–93 (1998).

    Article  CAS  Google Scholar 

  3. Weinert T.A., Kiser, G.L. & Hartwell, L.H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev . 8, 652–665 ( 1994).

    Article  CAS  Google Scholar 

  4. Lydall, D. & Weinert, T.A. Yeast checkpoint genes in DNA damage and processing: implications for repair and arrest. Science 270, 1488–1491 ( 1995).

    Article  CAS  Google Scholar 

  5. Longhese, M.P., Fraschini, R., Plevani, P. & Lucchini, G. Yeast pip3/MEC3 mutants fail to delay entry into S phase and to slow down DNA replication in response to DNA damage and they define a functional link between Mec3 and DNA primase. Mol. Cell. Biol. 16, 3225–3244 (1996).

    Article  Google Scholar 

  6. Longhese, M.P. et al. The novel DNA damage checkpoint protein Ddc1p is phosphorylated periodically during the cell cycle and in response to DNA damage in yeast. EMBO J. 16, 5216–5226 (1997).

    Article  CAS  Google Scholar 

  7. Paciotti, V., Lucchini, G., Plevani, P. & Longhese, M.P. Mec1p is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. EMBO J. 17, 4199–4209 (1998).

    Article  CAS  Google Scholar 

  8. Allen, J.B., Zhou, Z., Siede, W., Friedberg, E.C. & Elledge, S.J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage–induced transcription in yeast. Genes Dev . 8, 2416–2428 ( 1994).

    Article  Google Scholar 

  9. Sun, Z., Fay, D.S., Marini, F., Foiani, M. & Stern, D.F. Spk1/Rad53 is regulated by Mec1–dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10, 395–406 ( 1996).

    Article  CAS  Google Scholar 

  10. Jones, R.S. & Gelbart, W.M. The Drosophila Polycomb–group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Mol. Cell. Biol. 13, 6357 –6366 (1993).

    Article  CAS  Google Scholar 

  11. Tschiersh, B. et al. The protein encoded by the Drosophila position effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    Article  Google Scholar 

  12. Stassen, M.J., Bailey, D., Nelson S., Chinwalla, V. & Harte, P.J. The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech. Dev . 52, 209–223 ( 1995).

    Article  CAS  Google Scholar 

  13. Laible, G. et al. Mammalian homologues of the Polycomb–group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 16, 3219–3232 (1997).

    Article  CAS  Google Scholar 

  14. Djabali, M. et al. A trithorax–like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nature Genet. 2 , 113–118 (1992).

    Article  CAS  Google Scholar 

  15. Golemis, E.A., Gyuris, J. & Brent, R. Interaction trap/two–hybrid system to indentify interacting proteins. Current Protocols in Molecular Biology supple. 27 (Ausbel, F.M. et al.) 1–14 (Greene Publishing Associates and Wiley–Interscience, New York, 1990).

    Google Scholar 

  16. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    Article  CAS  Google Scholar 

  17. Paulovich, A.G. & Hartwell, L.H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841– 847 (1995).

    Article  CAS  Google Scholar 

  18. Gottschling, D.E., Aparicio, O.M., Billington, B.L. & Zakian, V.A. Position effect at S. cerevisiae telomeres: reversible repression of PolII transcription. Cell 63, 751– 762 (1990).

    Article  CAS  Google Scholar 

  19. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543 –555 (1993).

    Article  CAS  Google Scholar 

  20. Adams, A.K. & Hom, C. Specific DNA replication mutants affect telomere length in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4614–4620 ( 1996).

    Article  CAS  Google Scholar 

  21. Wotton, D. & Shore, D. A novel Rap1–interacting factor, Rif2p, cooperates with Rif1p to regulate length in Saccharomyces cerevisiae . Genes Dev. 11, 748– 760 (1997).

    Article  CAS  Google Scholar 

  22. Kyrion, G., Boakye, K.A. & Lustig, A.J. C–terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159 –5173 (1992).

    Article  CAS  Google Scholar 

  23. Dahlen, M., Olsson, T., Kanter–Smoler, G., Ramme, A. & Sunnerhagen, P. Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 611–621( 1998).

    Article  CAS  Google Scholar 

  24. Marcand, S., Gilson, E. & Shore, D. A protein–counting mechanism for telomere length regulation in yeast. Science 275, 986– 990 (1997).

    Article  CAS  Google Scholar 

  25. Shore, D. Telomeres—unsticky ends. Science 281, 1818–1819 (1998).

    Article  CAS  Google Scholar 

  26. Cardoso, C. et al. Specific interaction between the XNP/ATR–X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet. 7, 679–684 (1998).

    Article  CAS  Google Scholar 

  27. Rozenblatt–Rosen, O. et al. The C–terminal SET domain of ALL–1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl Acad. Sci. USA 95, 4152– 4157 (1998).

    Article  Google Scholar 

  28. Cui, X. et al. Association of SET domain and myotubularin–related proteins modulates growth control. Nature Genet. 18, 331–337 (1998).

    Article  CAS  Google Scholar 

  29. Fairhead, C., Llorente B., Denis, F., Soler, M. & Dujon, B. New vectors for combinatorial deletions in yeast chromosomes and for gap–repair using split–marker recombination. Yeast 12, 1439–1457 ( 1996).

    Article  CAS  Google Scholar 

  30. Cockell, M. et al. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129, 909– 924 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Moreau, R. Brent, M. Djabali, M. Cockell, S. Gasser, M. Bolotin, M. Kazmaier, P. Linder, D. Gottschling, C. Mann, C. Fairhead, C. Nislow, L. Pillus, M. Bickle, G. Georgiou, P. Luciano, G. Fourel, S. Marcand and A. Rigal for discussions, protocols and materials; S. Gasser, M. Cockell, C. Mann, G. Schatz, G. Lucchini and G. Cavalli for their suggestions and corrections; and M. Zalewski for technical assistance. Work in the laboratories of V.G. and E.G. was supported by La Ligue Nationale contre le Cancer and l'Association pour la Recherche sur le Cancer. Work in the laboratory of M.P. is supported by Grant MURST Cofinanz. Progr. di Ricerca di Interesse nazionale 1997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Géli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corda, Y., Schramke, V., Longhese, M. et al. Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nat Genet 21, 204–208 (1999). https://doi.org/10.1038/5991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing