Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination

Abstract

We describe a strategy for generating an allelic series of mutations at a given locus that requires the production of only one targetted mouse line. The ‘allelogenic’ mouse line we produced carries a hypomorphic allele of Fgf8, which can be converted to a null allele by mating to ere transgenic animals. The hypomorphic allele can also be reverted to wild-type by mating the allelogenic mice to flp transgenic animals, thereby generating a mouse line suitable for Cre-induced tissue-specific knockout experiments. Analysis of embryos carrying different combinations of these alleles revealed requirements for Fgf8 gene function during gastrulation, as well as cardiac, craniofacial, forebrain, midbrain and cerebellar development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Moens, C.B., Auerbach, A.B., Conlon, R.A., Joyner, A.L. & Rossant, J. A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev. 6, 691–704 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Ramirez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R. & Bradley, A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73, 279–294 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase b gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of /oxP-flanked gene segments including deletion in germ cells.Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lewandoski, M., Wassarman, K.M. & Martin, G.R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7, 148–151 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Hennet, T., Hagen, F.K., Tabak, L.A. & Marth, J.D. T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination. Proc. Natal. Acad. Sci. USA 92, 12070–12074 (1995).

    Article  CAS  Google Scholar 

  10. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Crossley, P.M., Minowada, G., MacArthur, C.A. & Martin, G.R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Vogel, A., Rodriguez, C. & Izpiscea-Belmonte, J.-C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  13. Crossley, P., Martinez, S. & Martin, G. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, S.M.K., Danielian, P.S., Fritzsch, B. & McMahon, A.P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969 (1997).

    CAS  PubMed  Google Scholar 

  15. Bally-Cuif, L. & Wassef, M. Determination events in the nervous system of the vertebrate embryo. Curr. Biol. 5, 450–458 (1995).

    Google Scholar 

  16. Joyner, A.L. Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Puelles, L., Marin, F. Martinez de la Torre, M. & Martinez, S. The midbrain-hindbrain junction: a model system for brain regionalization through morphogenetic neuroepithelial interactions in Mammalian Development (ed. Lonai, P.) 173–197 (Gordon & Breach/Harwood Academic Publ., Amsterdam, 1996).

  18. Heikinheimo, M., Lawshé, A., Shackleford, G.M., Wilson, D.B. & MacArthur, C.A. Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs, and central nervous system. Mecn. Dev. 48, 129–138. (1994).

    Article  CAS  Google Scholar 

  19. Ohuchi, H. et al. Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem. Biophys. Res. Comm. 204, 882–888 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Crossley, P.M. & Martin, G.R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  21. Mahmood, R., et al. A role for FGF-8 8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol. 5, 797–806. (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Basilico, C. & Moscatelli, D. The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Wassarman, K. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    CAS  PubMed  Google Scholar 

  25. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Science 380, 435–439 (1996).

    CAS  Google Scholar 

  27. Jung, S., Rajewsky, K. & Radbruch, A. Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984–987 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Lewandoski, M., Meyers, E.N. & Martin, G.R. Analysis of Fgf8 function in the developing vertebrate embryo. Cold Spring Harbor Symp. Quant. Biol. (in press).

  29. Couly, G. & Le Douarin, N. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev. Biol. 120, 198–214 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Graziadei, P. & Monti-Graziadei, A. The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis. Neurosci. 46, 617–629 (1992).

    Article  CAS  Google Scholar 

  31. McDevitt, M., Shivdasani, R., Fujiwara, Y., Yang, H. & Orkin, S. A ‘knockdown’ mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc. Natal. Acad. Sci. USA 94, 6781–6785 (1997).

    Article  CAS  Google Scholar 

  32. Niswander, L. & Martin, G.R. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–768 (1992).

    CAS  PubMed  Google Scholar 

  33. Savage, M.P. et al. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev. Dynamics 198, 159–170 (1993).

    Article  CAS  Google Scholar 

  34. Olson, E., Arnold, H.-H., Rigby, P. & Wold, B. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. van der Hoeven, F., Zakany, J. & Duboule, D. Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls. Cell 85, 1025–1035 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Magin, T.M., McWhir, J. & Melton, D. A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency.Nucleic Acids Res. 14, 379–3796. (1992).

    Google Scholar 

  37. Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones, in Gene Targeting, A Practical Approach (ed. Joyner, A.L.) 33–61 (IRL Press, Oxford, UK, 1993).

  38. Nagy, A. & Rossant, J. Production of completely ES cell-derived fetuses, in Gene Targeting: A Practical Approach (ed. Joyner, A.L.) 147–179 (IRL Press, Oxford University Press, Oxford, 1993).

  39. MacArthur, C.A., Lawshe, A., Shankar, D.B., Heikinheimo, M. & Shackleford, G.M. FGF-8 isoforms differ in NIH3T3 cell transforming potential.Cell Growth Diff. 6, 817–825 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail R. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, E., Lewandoski, M. & Martin, G. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18, 136–141 (1998). https://doi.org/10.1038/ng0298-136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing