Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hypermutable myotonic dystrophy CTG repeats in transgenic mice

Abstract

Myotonic dystrophy (DM) is one of a growing number of inherited human disorders associated with the expansion of triplet repeat DNA sequences1. Expanded alleles are highly unstable in both the germline and soma, accounting in large part for the unusual genetics of this disorder, its phenotypic variability and probably, the progressive nature of the symptoms2–7. However, the molecular mechanisms and the genetic factors modulating repeat stability in DM and the other human disorders associated with expanded repeats are not well understood. To provide a model system in which the turnover of triplet repeats could be studied throughout mammalian development, we have generated five transgenic mouse lines incorporating expanded CTG/CAG arrays derived from the human DM locus. Transgene analysis has revealed germline hypermutability, including expansions, deletions and parent-of-origin effects, somatic and early embryonic instability and segregation distortion. Mutational differences between lines and sexes demonstrate that stability, as in humans, is modulated by as yet unidentified cis and trans acting genetic elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monckton, D.G. & Caskey, C.T. Unstable triplet repeat diseases. Circulation 91, 513–520 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Monckton, D.G., Wong, L.-J.C., Ashizawa, T. & Caskey, C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 4, 1–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Wong, L.-J.C., Ashizawa, T., Monckton, D.G., Caskey, C.T. & Richards, C.S. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am. J. Hum. Genet. 56, 114–122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jansen, G. et al. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)n variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 54, 575–585 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Igarashi, S. et al. Intergenerational instability of the GAG repeat of the gene for Machado-Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Hum. Mol. Genet. 5, 923–932 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nature Genet. 9, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg, Y.P. et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum. Mol. Genet. 5, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Maruyama, H. et al. Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum. Mol. Genet. 4, 807–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. Mol. Genet. 1, 255–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Orr, H.T. et al. Expansion of an unstable CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  17. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12. Nature Genet. 6, 14–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Mahon, K.A., Overbeek, P.A. & Westphal, H. Prenatal lethality in a transgenic mouse line is the result of a chromosomal translocation. Proc. Natl. Acad. Sci. USA 85, 1165–1168 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, Y.E., Nemeth, M., Pathak, S., Meistrich, M.L. & Wong, P.K. Preliminary characterization of transgenic males harboring an unbalanced product of the reciprocal translocation T (3;10). Mouse Genome(in the press).

  21. Chakraborty, R. et al. Segregation Distortion of the CTG repeats at the myotonic dystrophy locus. Am. J. Hum. Genet. 59, 109–118 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ikeuchi, T. et al. Non-Mendelian transmission in dentatorubral-pallidoluysian atrophy and Machado-Joseph disease: the mutant allele is preferentially transmitted in male meiosis. Am. J. Hum. Genet. 58, 730–733 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly, R.G., Gibbs, M., Collick, A. & Jeffreys, A.J. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc. R. Soc. Lon. B 245, 235–245 (1991).

    Article  CAS  Google Scholar 

  24. Gibbs, M., Collick, A., Kelly, R.G. & Jeffreys, A.J. A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics 17, 121–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Collick, A. et al. Variable germline and embryonic instability of the human minisatellite MS32 (D1S8) in transgenic mice. EMBO J. 13, 5745–5753 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collick, A. et al. Instability of long inverted repeats within mouse transgenes. EMBO J. 15, 1163–1171 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wörhle, D., Hennig, I., Vogel, W. & Steinbach, P. Mitotic stability of fragile X mutations in differentiated Cells indicates early post-conceptional trinucleotide repeat expansion. Nature Genet. 4, 140–142 (1993).

    Article  Google Scholar 

  28. Jeffreys, A.J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: a novel source of polymorphism for studying allelic variation and mutation by single molecule analysis. Cell 60, 473–485 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Pinkert, C.A. Transgenic Animal Technology: A Laboratory Handbook. (San Diego, Academic Press, 1994).

    Google Scholar 

  30. Henrion, A.A., Martinez, A., Mattei, M.-G., Kahn, A. & Raymondjean, M., Structure, sequence and chromosomal location of the gene for USF2 transcription factor in mouse. Genomics 25, 36–43 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Monckton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monckton, D., Coolbaugh, M., Ashizawa, K. et al. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat Genet 15, 193–196 (1997). https://doi.org/10.1038/ng0297-193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing