The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced

Abstract

The largest known gene is the human dystrophin gene, which has 79 exons spanning at least 2,300 kilobases (kb). Transcript accumulation was monitored from four regions of the gene following induction of expression in muscle cell cultures. Quantitative reverse transcription–polymerase chain reaction (RT–PCR) results indicate that approximately 12 h are required for transcription of 1,770 kb (at an average elongation rate of 2.4 kb min−1), extrapolating to a transcription time of 16 h for the complete gene. Accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5′ end before transcription is complete providing strong evidence for cotranscriptional splicing. The rate of transcript accumulation was reduced at the 3′ end of the gene relative to the 5′ end, perhaps due to premature termination of transcription complexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Den Dunnen, J.Y. et al. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am. J. hum. Genet. 45, 835–847 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Coffey, A.J. et al. Construction of a 2.6-Mb contig In yeast artificial chromosomes spanning the human dystrophin gene using an STS-based approach. Genomics 12, 474–484 (1992).

    CAS  Article  Google Scholar 

  3. 3

    Monaco, A.P., Walker, A.P., Millwood, I., Larin, Z. & Lehrach, H. A yeast artificial chromosome contig containing the complete Duchenne muscular dystrophy gene. Genomics 12, 465–473 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Roberts, R.G., Coffey, A.J., Bobrow, M. & Bentley, D.R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13, 942–950 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–228 (1988).

    CAS  Article  Google Scholar 

  6. 6

    Ucker, D.S. & Yamamoto, K.R. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. J. biol. Chem. 259, 7416–7420 (1984).

    CAS  PubMed  Google Scholar 

  7. 7

    Sehgal, P.B., Derman, E., Molloy, G.R., Tamm, I. & Darnell, J.E. 5-6-Dichloro-1-B-D-ribofuranosylbenzimide inhibits initiation of nuclear heterogeneous RNA chains in Hala cells. Science 194, 431–433 (1976).

    CAS  Article  Google Scholar 

  8. 8

    Lederfein, D., Yaffe, D. & Nudel, U. A housekeeping type promoter, located in the 3′ region of the Duchenne muscular dystrophy gene, controls the expression of Dp71, a major product of the gene. Hum. molec. Genet. 2, 1883–1888 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Gorecki, D.C. et al. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. molec. Genet. 1, 505–510 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Byers, T.J., Lidov, H.G.W. & Kunkel, L.M. An alternative dystrophin transcript specific to peripheral nerve. Nature Genet. 4, 77–81 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Chelly, J., Montarras, D., Pinset, C., Berwald-Netter, Y. & Kaplan, J.C. Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction: application to dystrophin mRNA in cultured myogenic and brain cells. Eur. J. Biochem. 187, 691–698 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Nudel, U., Robzyk, K. & Yaffe, D. Expression of the putative Duchenne muscular dystrophy gene in differentiated myogenic cell cultures and in the brain. Nature 331, 635–638 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Lev, A.A., Feener, C.C., Kunkel, L.M. & Brown, R.H. Expression of the Duchenne's muscular dystrophy gene in cultured muscle cells. J. biol. Chem. 262, 15817–15820 (1987).

    CAS  PubMed  Google Scholar 

  14. 14

    Klamut, H.J., Gangopadhyay, S.B., Worton, R.G. & Ray, P.N. Molecular and functional analysis of the muscle-specific promoter region of the Duchenne muscular dystrophy gene. Molec. cell. Biol. 10, 193–205 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Krause, M. & Hirsh, D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–761 (1987).

    CAS  Article  Google Scholar 

  16. 16

    Feener, C.A., Koenig, M. & Kunkel, L.M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).

    CAS  Article  Google Scholar 

  17. 17

    Bies, R.D. et al. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart & brain development. Nucl. Acids Res. 20, 1725–1731 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Bar, S. et al. A novel product of the Duchenne muscular dystrophy gene which greatly differs from known isoforms in Its structure and tissue distribution. Biochem. J. 272, 557–560 (1990).

    CAS  Article  Google Scholar 

  19. 19

    Byers, T.J., Lidov, H.G.W. & Kunkel, L.M. An alternative dystrophin transcript specific to peripheral nerve. Nature Genet. 4, 77–81 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Hugnot, J.P. et al. Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75-kDa protein widely distributed in non-muscle tissues. Proc. natn. Acad. Sci. U.S.A. 89, 7506–7510 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Lederfein, D. et al. A 71-kilodalton protein is a major product of the Duchenne muscular dystrophy gene in brain and other non-muscle tissues. Proc. natn. Acad. Sci. U.S.A. 89, 5346–5350 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Thummel, C.S., Burtis, K.C., Hogness, D.S. Spatial and temporal patterns of E74 transcription during drosophila development. Cell 61, 101–111 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Karim, F.D. & Thummel, C.S. Ecdysone coordinates the timing and amounts of E74A and E74B trancription in Drosophlia. Genes Dev. 5, 1067–1079 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Shermoen, A.W. & O'Farrell, P.H. Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67, 303–310 (1991).

    CAS  Article  Google Scholar 

  25. 25

    Blau, H.M., Webster, C., Pavlath, G.K. & Chiu, C. Evidence for defective myoblasts in Duchenne muscular dystrophy. Adv Exp. Medicine Bio. 182, 85–110 (1985).

    CAS  Article  Google Scholar 

  26. 26

    Nevins, J.R. & Darnell, J.E. Steps in the processing of Ad2 mRNA Poly (A)+ nuclear sequences are conserved and poly (A) addition precedes splicing. Cell 15, 1477–1493 (1978).

    CAS  Article  Google Scholar 

  27. 27

    Ford, J.P. & Hus, M. Transcription pattern of in vivo-labeled late simian virus 40 RNA: equimolar transcription beyond the mRNA 3′ terminus. J. Virol. 28, 795–801 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Weber, J., Blanchard, J.M., Binsberg, H., Darnell, J.E. Order of polyadenylic acid addition and splicing events In early adenovirus mRNA formation. J. Virol. 33, 286–291 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Galli, G., Guise, J., Tucker, P.W., Nevins, J.R. Poly(A) site choice rather than splice site choice governs the regulated production of IgM heavy-chain RNAs. Proc. natn. Acad. Sci. U.S.A. 85, 2439–2443 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Beyer, A.L. & Osheim, Y.N. Splice site selection, rate of splicing & alternative splicing on nascent transcripts. Genes Dev. 2, 754–765 (1988).

    CAS  Article  Google Scholar 

  31. 31

    LeMaire, M.F. & Thummel, C.S. Splicing precedes polyadenylatlon during drosophila E74A transcription. Molec. cell Biol. 10, 6059–6063 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Bauren, G. & Wieslander, L. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76, 183–192 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Zeevi, M., Nevins, J.R. & Darnell, J.E. Jr. Nuclear RNA is spliced in the absence of poly (A) addition. Cell 26, 39–46 (1981).

    CAS  Article  Google Scholar 

  34. 34

    Abei, M. & Weissmann, C. Precision and orderliness in splicing. Trend Genet. 3, 102–107 (1987).

    Article  Google Scholar 

  35. 35

    Reed, R. & Maniatis, T. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46, 681–690 (1986).

    CAS  Article  Google Scholar 

  36. 36

    Solnick, D. Alternative splicing caused by RNA secondary structure. Cell 43, 667–676 (1985).

    CAS  Article  Google Scholar 

  37. 37

    Hedley, M.L. & Maniatis, T. Sex-specific splicing and polyadenylatlon of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65, 579–586 (1991).

    CAS  Article  Google Scholar 

  38. 38

    Lee, H., Kraus, K.W., Wolfner, M.F. & Lis, J.T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 6, 284–295 (1992).

    CAS  Article  Google Scholar 

  39. 39

    London, L., Keene, R.G. & Landick, R. Analysis of premature termination in c-myc during transcription by RNA polymerase II in a Hela nuclear extract. Molec. cell. Biol. 11, 4599–4615 (1991).

    CAS  Article  Google Scholar 

  40. 40

    Spencer, C.A. & Groudine, M. Transcription elongation and eukaryotic gene regulation. Oncogene 5, 777–785 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    MacDonald, R.J., Swift, G.H., Przybyla, A.E. & Chirgwin, J.M. Isolation of RNA using guanidinium salts. Meth. Enzymol. 152, 219–227 (1987).

    CAS  Article  Google Scholar 

  42. 42

    Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  43. 43

    Wang, M., Doyle, M.V. & Mark, D.F. Quantitation of mRNA by the polymerase chain reaction. Proc. natn. Acad. Scl. U.S.A. 86, 9717–9721 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tennyson, C., Klamut, H. & Worton, R. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9, 184–190 (1995). https://doi.org/10.1038/ng0295-184

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing