Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulatory element detection using correlation with expression

Abstract

We present here a new computational method for discovering cis-regulatory elements that circumvents the need to cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Time courses for cell cycle and sporulation.

References

  1. 1

    Cherry, J.M. et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature 387, 67–73 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Roth, F.R., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Lawrence, C.E. et al. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214 (1993).

    CAS  Article  Google Scholar 

  8. 8

    Neuwald, A.F., Liu, J.S. & Lawrence, C.E. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 4, 1618–1632 (1995).

    CAS  Article  Google Scholar 

  9. 9

    Van Helden, J., Andre, B. & Collado-Vides, J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281, 827–842 (1998).

    CAS  Article  Google Scholar 

  10. 10

    DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 287, 680–686 (1997).

    Article  Google Scholar 

  11. 11

    Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Berg, O.G. & Von Hippel, P.H. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 193, 723–750 (1987).

    CAS  Article  Google Scholar 

  16. 16

    Magasanik, B. Regulation of nitrogen utilisation. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression (eds. Jones, E.W., Pringle, J.R. & Broach, J.R.) 283–318 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992).

    Google Scholar 

  17. 17

    Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Ptashne, M. & Gann, A. Imposing specificity by localization: mechanism and evolvability. Curr. Biol. 8, R897 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Holstege, F.C.P. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Halfter, H., Kavety, B., Vandekerckhove, J., Kiefer, F. & Gallwitz, D. Sequence, expression and mutational analysis of BAF1, a transcriptional activator and ARS1-binding protein of the yeast Saccharomyces cerevisiae. EMBO J. 8, 4265–4272 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Della Seta, F. et al. The ABF1 factor is the transcriptional activator of the L2 ribosomal 15 protein genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2437–2441 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Loots, G.G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Hardison, R.C., Oeltjen, J. & Miller, W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Ben-Dor, A., Shamir, R. & Yakhini, Z. Clustering gene expression patterns. J. Comput. Biol. 6, 281–297 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Shraiman for suggesting linear multivariate fits to expression data, and L. Grivell, R. Lascaris and H. de Nobel for discussions and critical reading of the manuscript. Support was received from the NSF under grant number DMR 9732083 and from the Keck foundation to H.L.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harmen J. Bussemaker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bussemaker, H., Li, H. & Siggia, E. Regulatory element detection using correlation with expression. Nat Genet 27, 167–171 (2001). https://doi.org/10.1038/84792

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing