Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome

Abstract

In type I blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), eyelid abnormalities are associated with ovarian failure. Type II BPES shows only the eyelid defects, but both types map to chromosome 3q23. We have positionally cloned a novel, putative winged helix/forkhead transcription factor gene, FOXL2, that is mutated to produce truncated proteins in type I families and larger proteins in type II. Consistent with an involvement in those tissues, FOXL2 is selectively expressed in the mesenchyme of developing mouse eyelids and in adult ovarian follicles; in adult humans, it appears predominantly in the ovary. FOXL2 represents a candidate gene for the polled/intersex syndrome XX sex-reversal goat.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the BPES region.
Figure 2: Predicted amino acid sequence and domain alignment of FOXL2.
Figure 3: Segregation analysis of FOXL2 mutations in type I and type II BPES families.
Figure 4: Ovary-specific expression of FOXL2 in human tissues.
Figure 5: Foxl2 expression in mouse tissues in whole-mount in situ hybridization.
Figure 6: Foxl2 expression in mouse embryo section.
Figure 7: Foxl2 expression in mouse adult ovary.
Figure 8: Eyelid defects in a BPES family.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Aittomaki, K. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Layman, L.C., Amde, S., Cohen, D.P., Jin, M. & Xie, J. The Finnish follicle-stimulating hormone receptor gene mutation is rare in North America women with 46, XX ovarian failure. Fertil. Steril. 69, 300–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Simpson, J.L. & Rajkovic, A. Ovarian differentiation and gonadal failure. Am. J. Med. Genet. 89, 186–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bione, S. et al. A human homologue of Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implication for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prueitt, R.L., Ross, J.L. & Zinn, A.R. Physical mapping of nine Xq translocation breakpoints and identification of XPNPEP2 as a premature ovarian failure candidate gene. Cytogenet. Cell Genet. 89, 44–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Zlotogora, J., Sagi, M. & Cohen, T. The blepharophimosis, ptosis, and epicanthus inversus syndrome: delineation of two types. Am. J. Hum. Genet. 35, 1020–1027 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Amati, P. et al. A gene for blepharophimosis-ptosis-epicanthus inversus syndrome maps to chromosome 3q23. Hum. Genet. 96, 213–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Amati, P. et al. A gene for premature ovarian failure associated with eyelid malformation maps to chromosome 3q22–q23. Am. J. Hum. Genet. 58, 1089–1092 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Small, K.W. et al. Blepharophimosis syndrome is linked to chromosome 3q. Hum. Mol. Genet. 4, 443–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Boccone, L., Meloni, A., Falchi, A.M., Usai, V. & Cao, A. Blepharophimosis, ptosis, epicanthus inversus syndrome, a new case associated with de novo balanced autosomal translocation [46,XY,t(3;7)(q23;q32)]. Am. J. Med. Genet. 51, 258–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Bisceglia, L. et al. Cellular retinol binding protein 1 (RBP1): a frequent polymorphism, refined map position and exclusion as the blepharophimosis ptosis epicanthus inversus ayndrome gene. Mol. Cell. Probes 12, 255–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Frohman, M.A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 218, 340–356 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Kaestner, K.H., Knochel, W. & Martinez, D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  14. Treier, M. et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 12, 1691–1704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanna-Rose, W. & Hansen, U. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12, 229–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. De Baere, E. et al. Closing in on the BPES gene on 3q23: mapping of a de novo reciprocal translocation t(3;4)(q23;p15.2) breakpoint within a 45-kb cosmid and mapping of three candidate genes, RBP1, RBP2, and β'-COP, distal to the breakpoint. Genomics 57, 70–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Praphanphoj, V. et al. Molecular cytogenetic evaluation in a patient with a translocation (3;21) associated with blepharophimosis, ptosis, epicanthus inversus syndrome (BPES). Genomics 65, 67–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kleinjan, D. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 7, 1611–1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lawson, C.T. et al. Definition of the blepharophimosis, ptosis, epicanthus inversus syndrome critical region at chromosome 3q23 based on the analysis of chromosomal anomalies. Hum. Mol. Genet. 4, 963–967 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Chandler, K.E., de Die-Smulders, C.E., Engelen, J.J. & Schrander, J.J. Severe feeding problems and congenital laryngostenosis in a patient with 3q23 deletion. Eur. J. Pediatr. 156, 636–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Kaufmann, E. & Knochel, W. Five years on the wings of fork head. Mech. Dev. 57, 3–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H. & Boehm, T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Ang, S.L. & Rossant, J. HNF-3 β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Kaestner, K.H., Silberg, D.G., Traber, P.G. & Schutz, G. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev. 11, 1583–1595 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Kume, T. et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93, 985–996 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Labosky, P.A. et al. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development 124, 1263–1274 (1997).

    CAS  PubMed  Google Scholar 

  28. De Felice, M. et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nature Genet. 19, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Clifton-Bligh, R.J. et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genet. 19, 399–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Nishimura, D.Y. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19, 140–147 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Vegetti, W. et al. Premature ovarian failure. Mol. Cell. Endocrinol. 161, 53–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Findlater, G.S., McDougall, R.D. & Kaufman, M.H. Eyelid development, fusion and subsequent reopening in the mouse. J. Anat. 183, 121–129 (1993).

    PubMed  PubMed Central  Google Scholar 

  33. Vassalli, A., Matzuk, M.M., Gardner, H.A., Lee, K.F. & Jaenisch, R. Activin/inhibin β B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev. 8, 414–427 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Juriloff, D.M., Harris, M.J., Banks, K.G. & Mah, D.G. Gaping lids, gp, a mutation on centromeric chromosome 11 that causes defective eyelid development in mice. Mamm. Genome 11, 440–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Wawersik, S. & Maas, R.L. Vertebrate eye development as modeled in Drosophila. Hum. Mol. Genet. 9, 917–925 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Quiring, R., Walldorf, U., Kloter, U. & Gehring, W.J. Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science 265, 785–789 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Mears, A.J. et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld–Rieger anomaly. Am. J. Hum. Genet. 63, 1316–1328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, R.S. et al. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum. Mol. Genet. 9, 1021–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Fraser, I.S., Shearman, R.P., Smith, A. & Russell, P. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause. Fertil. Steril. 50, 747–751 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Nicolino, M., Bost, M., David, M. & Chaussain, J.L. Familial blepharophimosis: an uncommon marker of ovarian dysgenesis. J. Pediatr. Endocrinol. Metab. 8, 127–133 (1995).

    CAS  PubMed  Google Scholar 

  41. Kaipia, A. & Hsueh, A.J. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 59, 349–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, X., Rubock, M.J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Dong, J. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, C.W., Houston-Hawkins, D.E., Woodruff, T.K. & Matzuk, M.M. Insertion of Inhbb into the Inhba locus rescues the Inhba-null phenotype and reveals new activin functions. Nature Genet. 25, 453–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Vaiman, D. et al. High-resolution human/goat comparative map of the goat polled/intersex syndrome (PIS): the human homologue contained in a human YAC from HSA3q23. Genomics 56, 31–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Lichter, P., Ledbetter, S.A., Ledbetter, D.H. & Ward, D.C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Natl. Acad. Sci. USA 87, 6634–6638 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  48. Pilia, G. et al. Jagged-1 mutation analysis in Italian Alagille syndrome patients. Hum. Mutat. 14, 394–400 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families for participation; G. Crisponi for photographing BPES patients and whole-mount mouse embryo in situ samples; S. Orrù for sectioning and photographing mouse embryo sections; S. McMillan and the Telethon screening service, Milan, for BAC and PAC screening; a group led by E. Chen and P. Ma, with assistance from V. Belonogoff, for long-range sequencing; and G. Sebastio, L. Boccone and M.R. Piemontese. This work was supported by the Telethon Grant N. E357 and E867 to G.P. and Assessorato Igiene e Sanità, Legge Regionale n.11 del 30.04.1990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pilia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisponi, L., Deiana, M., Loi, A. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27, 159–166 (2001). https://doi.org/10.1038/84781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing