Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene-target recognition among members of the Myc superfamily and implications for oncogenesis

Abstract

Myc and Mad family proteins regulate multiple biological processes through their capacity to influence gene expression directly. Here we show that the basic regions of Myc and Mad proteins are not functionally equivalent in oncogenesis, have separable E-box–binding activities and engage both common and distinct gene targets. Our data support the view that the opposing biological actions of Myc and Mxi1 extend beyond reciprocal regulation of common gene targets. Identification of differentially regulated gene targets provides a framework for understanding the mechanism through which the Myc superfamily governs the growth, proliferation and survival of normal and neoplastic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the basic regions of Myc superfamily members.
Figure 2: c-Myc and Mxi1 basic regions are not equivalent in transformation.
Figure 3: Specific residues in the Myc basic region determine biological activity.
Figure 4: Interaction of Myc and Mxi1 basic regions with DNA.
Figure 5: c-Myc and c-Myc(Mxi1-BR) differ in their capacity to induce apoptosis under high serum conditions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Evan, G. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44– 49 (1993).

    Article  CAS  Google Scholar 

  2. Amati, B. & Land, H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108 (1994).

    Article  CAS  Google Scholar 

  3. Blackwood, E.M., Kretzner, L. & Eisenman, R.N. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 2, 227–235 (1992).

    Article  CAS  Google Scholar 

  4. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 ( 1996).

    Article  CAS  Google Scholar 

  5. Schreiber-Agus, N. & DePinho, R.A. Repression by the Mad(Mxi1)-Sin3 complex. Bioessays 20, 808–818 (1998).

    Article  CAS  Google Scholar 

  6. Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149– 1151 (1990).

    Article  CAS  Google Scholar 

  7. Kretzner, L., Blackwood, E.M. & Eisenman, R.N. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426– 429 (1992).

    Article  CAS  Google Scholar 

  8. Ayer, D.E., Kretzner, L. & Eisenman, R.N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211 –222 (1993).

    Article  CAS  Google Scholar 

  9. Ferre d'Amare, A., Prendergast, G.C., Ziff, E.B. & Burley, S.K. Recognition of Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 ( 1993).

    Article  CAS  Google Scholar 

  10. Grandori, C., Mac, J., Siebelt, F., Ayer, D.E. & Eisenman, R.N. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J. 15, 4344–4357 (1996).

    Article  CAS  Google Scholar 

  11. Solomon, D.L., Amati, B. & Land, H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic Acids Res. 21, 5372–5376 (1993).

    Article  CAS  Google Scholar 

  12. Halazonetis, T.D. & Kandil, A.N. Determination of the c-MYC DNA-binding site. Proc. Natl Acad. Sci. USA 88, 6162–6166 (1991).

    Article  CAS  Google Scholar 

  13. Fisher, F. & Goding, C.R. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J. 11, 4103– 4109 (1992).

    Article  CAS  Google Scholar 

  14. Hurlin, P.J., Queva, C. & Eisenman, R.N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).

    Article  CAS  Google Scholar 

  15. Greenberg, R.A. et al. Telomerase reverse transcriptase is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 ( 1999).

    Article  CAS  Google Scholar 

  16. Krikos, A., Laherty, C.D. & Dixit, V.M. Transcriptional activation and the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by κB elements. J. Biol. Chem. 267, 17971– 17976 (1992).

    CAS  PubMed  Google Scholar 

  17. Chiorini, J.A., Miyamoto, S., Harkin, S.J. & Safer, B. Genomic cloning and characterization of the human eukaryotic initiation factor-2ß promoter. J. Biol. Chem. 274, 4195– 4201 (1999).

    Article  CAS  Google Scholar 

  18. Dang, C.V. c-Myc target genes involved in cell growth, apoptosis and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    Article  CAS  Google Scholar 

  19. Grandori, C. & Eisenman, R.N. Myc target genes. Trends Biochem. Sci. 22, 177–181 (1997).

    Article  CAS  Google Scholar 

  20. Felsher, D.W. & Bishop, J.M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 ( 1999).

    Article  CAS  Google Scholar 

  21. Lee, T.C., Li, L., Philipson, L. & Ziff, E.B. Myc represses transcription of the growth arrest gene gas1. Proc. Natl Acad. Sci. USA 94, 12886–12891 (1997).

    Article  CAS  Google Scholar 

  22. Marhin, W.M., Chen, S., Facchini, L.M., Fornace, A.J. Jr & Penn, L.Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825– 2834 (1997).

    Article  CAS  Google Scholar 

  23. Wu, K.J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science 283, 676– 679 (1999).

    Article  CAS  Google Scholar 

  24. Li, L.H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).

    Article  CAS  Google Scholar 

  25. Lee, L.A. & Dang, C.V. c-Myc transrepression and cell transformation. Curr. Top. Microbiol. Immunol. 224, 131 –135 (1999).

    Google Scholar 

  26. Kauffmann-Zeh, A. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997).

    Article  CAS  Google Scholar 

  27. Mukherjee, B., Morgenbesser, S.D. & DePinho, R.A. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev. 6, 1480–1492 (1992).

    Article  CAS  Google Scholar 

  28. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  29. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  31. Ferre-D'Amare, A.R., Pognonec, P., Roeder, R.G. & Burley, S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13, 180–189 (1994).

    Article  CAS  Google Scholar 

  32. Shimizu, T. et al. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J. 16, 4689– 4697 (1997).

    Article  CAS  Google Scholar 

  33. Christopher, J.A. SPOCK: The Structural Properties Observation and Calculation Kit (Texas A & M University, The Center for Macromolecular Design, College Station, 1998).

  34. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).

    Article  CAS  Google Scholar 

  35. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  Google Scholar 

  36. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58, 5009– 5013 (1998).

    CAS  PubMed  Google Scholar 

  37. Chen, Y., Dougherty, E.R. & Bittner, M.L. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Optics 2, 364–374 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Land for the CAT reporter constructs; S. Lowe for the mouse ecotropic receptor; S. Hann for the pBabe-c-MycER plasmid; J. Chiorini for the eIF2ß reporter; Y. Jiang and J.K. Lee for technical assistance; and members of the DePinho laboratory for helpful comments. R.C.O. is a recipient of a fellowship from the Jane Coffin Childs Memorial Fund for Medical Research. N.S.-A. is a recipient of a Special Fellowship from the Leukemia Society of America. R.A.D. is supported by grants (RO1HD28317, RO1EY09300) from the National Institutes of Health and is an American Cancer Society Research Professor. Support from the DFCI Cancer Core grant to R.A.D. is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. DePinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Hagan, R., Schreiber-Agus, N., Chen, K. et al. Gene-target recognition among members of the Myc superfamily and implications for oncogenesis. Nat Genet 24, 113–119 (2000). https://doi.org/10.1038/72761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing