Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene expression informatics —it's all in your mine

Abstract

Technologies for whole–genome RNA expression studies are becoming increasingly reliable and accessible. However, universal standards to make the data more suitable for comparative analysis and for inter–operability with other information resources have yet to emerge. Improved access to large electronic data sets, reliable and consistent annotation and effective tools for 'data mining' are critical. Analysis methods that exploit large data warehouses of gene expression experiments will be necessary to realize the full potential of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the information system for large–scale gene expression experiments.
Figure 2: Clustering high–throughput gene expression data can shed new light on biological pathways and processes.

Similar content being viewed by others

References

  1. Chuang, S.E., Daniels, D.L. & Blattner, F.R. Global regulation of gene expression in Escherichia coli. J. Bacteriol. 175, 2026– 2036 (1993).

    Article  CAS  Google Scholar 

  2. Gress, T.M., Hoheisel, J.D., Lennon, G.G., Zehetner, G. & Lehrach, H. Hybridization fingerprinting of high–density cDNA–library arrays with cDNA pools derived from whole tissues. Mamm. Genome. 3, 609– 619 (1992).

    Article  CAS  Google Scholar 

  3. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

    Article  CAS  Google Scholar 

  4. Lockhart, D.J. et al. Expression monitoring by hybridization to high–density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  5. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  6. Ermolaeva, O. et al. Data management and analysis for gene expression arrays. Nature Genet. 20, 19–23 (1998).

    Article  CAS  Google Scholar 

  7. Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nature Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  8. Cheung, V.G. et al. Making and reading microarrays. Nature Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  9. Chen, Y., Dougherty, E.R. & Bittner, M.L. Ratio–based decisions and the quantitative analysis of cDNA microarray images. Biomed. Optics 2, 364–374 (1997).

    Article  CAS  Google Scholar 

  10. Ewing, B. & Green, P. Base–calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  Google Scholar 

  11. Berry, M.J.A. & Linoff, G. Data Mining Techniques for Marketing, Sales and Customer Support (John Wiley & Sons, New York, 1997).

    Google Scholar 

  12. Baxevanis, A. & Ouellette, B.F.F. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (John Wiley & Sons, New York, 1998).

    Book  Google Scholar 

  13. Brownstein, M.J., Trent, J.M. & Boguski, M.S. Functional genomics. Trends Guide to Bioinformatics (eds Patterson, M. & Handel, M.) 27–29 (Elsevier, Oxford, 1998).

    Google Scholar 

  14. Cole, K.A., Krizman, D.B. & Emmert–Buck, M.R. The genetics of cancer—a 3D model. Nature Genet. 21, 38–41 (1999).

    Article  CAS  Google Scholar 

  15. Ouellette, B.F. & Boguski, M.S. Database divisions and homology search files: a guide for the perplexed. Genome Res. 7, 952–955 ( 1997).

    Article  CAS  Google Scholar 

  16. Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J. & Ouellette, B.F. GenBank. Nucleic Acids Res. 26, 1–7 ( 1998).

    Article  CAS  Google Scholar 

  17. Ringwald, M. et al. A database for mouse development. Science 265, 2033–2034 (1994).

    Article  CAS  Google Scholar 

  18. Ringwald, M. et al. The mouse gene expression database GXD. Sem. Cell Dev. Biol. 8, 489–497 ( 1997).

    Article  CAS  Google Scholar 

  19. Makalowski, W. & Boguski, M.S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc. Natl Acad. Sci. USA 95, 9407–9412 (1998).

    Article  CAS  Google Scholar 

  20. Tatusov, R.L., Koonin, E.V. & Lipman, D.J. A genomic perspective on protein families. Science 278, 631–637 ( 1997).

    Article  CAS  Google Scholar 

  21. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  22. McEntyre, J. Linking up with Entrez. Trends Genet. 14, 39–40 (1998).

    Article  CAS  Google Scholar 

  23. Schuler, G.D., Epstein, J.A., Ohkawa, H. & Kans, J.A. Entrez: molecular biology database and retrieval system. Methods Enzymol. 266, 141–162 ( 1996).

    Article  CAS  Google Scholar 

  24. Cho, R.J. et al. A genome–wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65– 73 (1998).

    Article  CAS  Google Scholar 

  25. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 ( 1998).

    Article  CAS  Google Scholar 

  26. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680– 686 (1997).

    Article  CAS  Google Scholar 

  27. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole–genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  28. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 ( 1997).

    Article  CAS  Google Scholar 

  29. Kanehisa, M. Databases of biological information. Trends Guide to Bioinformatics (eds Patterson, M. & Handel, M.) 24–26 (Elsevier, Oxford, 1998).

    Google Scholar 

  30. Carr, D.B., Somogyi, R. & Michaels, G. Templates for looking at gene expression clustering. Statistical Computing and Graphics Newsletter 8, 20–29 (1997).

    Google Scholar 

  31. Michaels, G.S. et al. Cluster analysis and data visualization of large–scale gene expression data. Pac. Symp. Biocomput. 42– 53 (1998).

  32. Wen, X. et al. Large–scale temporal gene expression mapping of central nervous system development. Proc. Natl Acad. Sci. USA 95, 334–339 (1998).

    Article  CAS  Google Scholar 

  33. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome–wide expression patterns. Proc. Natl Acad. Sci. USA (in press).

  34. Kaufman, L. Finding Groups in Data: An Introduction to Cluster Analysis (John Wiley & Sons, New York, 1990).

    Book  Google Scholar 

  35. Spellman, P.T. et al. Comprehensive identification of cell cycle–regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell (in press).

  36. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science (in press).

  37. Marton, M.J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4 , 1293–1301 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bondarenko, H. Dai, Y. He & R. Stoughton for their significant contributions to this work; and G. Church for valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassett, D., Eisen, M. & Boguski, M. Gene expression informatics —it's all in your mine. Nat Genet 21 (Suppl 1), 51–55 (1999). https://doi.org/10.1038/4478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4478

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing