Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of cancer—a 3D model

Abstract

Gene expression microarrays hold great promise for studies of human disease states. There are significant technical issues specific to utilizing clinical tissue samples which have yet to be rigorously addressed and completely overcome. Precise, quantitative measurement of gene expression profiles from specific cell populations is at hand, offering the scientific community the first comprehensive view of the in vivo molecular anatomy of normal cells and their diseased counterparts. Here, we propose a model for integrating—in three dimensions—expression data obtained using the microarray.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microarray experiment: normal versus tumour.
Figure 2: Prostate 3D reconstruction database.

Similar content being viewed by others

References

  1. Nowak, R. Entering the postgenome era. Science 270, 368–371 (1995).

    Article  CAS  Google Scholar 

  2. Abbott, A. DNA chips intensify the sequence search. Nature 379 , 392 (1996).

    Article  CAS  Google Scholar 

  3. Schena, M. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467– 469 (1995).

    Article  CAS  Google Scholar 

  4. Velculescu, V. et al. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  5. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  Google Scholar 

  6. Schena, M. et al. Microarrays: biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16, 301– 306 (1998).

    Article  CAS  Google Scholar 

  7. Ramsay, G. DNA chips: state of the art. Nature Biotechnol. 16, 40–44 (1998).

    Article  CAS  Google Scholar 

  8. Bowtell, D.L. Options available—from start to finish—for obtaining expression data by microarray. Nature Genet. 21, 25 –32 (1999).

    Article  CAS  Google Scholar 

  9. Strausberg, R.L., Dahl C.A. & Klausner R.D. New opportunities for uncovering the molecular basis of cancer. Nature Genet. 16, 415– 416 (1997).

    Article  Google Scholar 

  10. Murphy, G.P. et al. Histopathology of localized prostate cancer. Consensus conference on diagnosis and prognostic parameters in localized prostate cancer. Scand. J. Urol. Nephrol. Suppl. 162, 7– 42 (1994).

    CAS  PubMed  Google Scholar 

  11. Epstein, J.I. Pathologic evaluation of prostatic carcinoma: critical information for the oncologist. Oncology 10, 527– 534 (1996).

    CAS  PubMed  Google Scholar 

  12. Bostwick, D.G. & Montironi R. Evaluating radical prostatectomy specimens: therapeutic and prognostic importance. Virchows Arch. 430, 1–16 (1997).

    Article  CAS  Google Scholar 

  13. Small, E.J. Update on the diagnosis and treatment of prostate cancer. Curr. Opin. Oncol. 10, 244–252 (1998).

    Article  CAS  Google Scholar 

  14. Pettaway, C.A. Prognostic markers in clinically localized prostate cancer. Tech. Urol. 4, 35–42 ( 1998).

    CAS  PubMed  Google Scholar 

  15. Klimecki, W.T., Futscher, B.W. & Dalton, W.S. Effects of ethanol and paraformaldehyde on RNA yield and quality. Biotechniques 16, 1021– 1023 (1994).

    CAS  PubMed  Google Scholar 

  16. Deng, G., Lu, Y., Zlotnikov, G., Thor, A.D. & Smith, H.S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 20, 2057– 2059 (1996).

    Article  Google Scholar 

  17. Chuaqui, R.F. et al. PB39: identification of a novel gene up–regulated in clinically aggressive human prostate cancer. Urology 50, 302–307 (1997).

    Article  CAS  Google Scholar 

  18. Zhuang, Z. et al. Barrett's esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res. 56, 1961–1964 (1996).

    CAS  PubMed  Google Scholar 

  19. Hung, J. et al. Allele–specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. J. Amer. Med. A 273, 1908–1910 (1995).

    CAS  Google Scholar 

  20. Bostwick, D. & Brawer, M.K. Prostatic intra–epithelial neoplasia and early invasion in prostate cancer. Cancer 59, 788–794 (1987).

    Article  CAS  Google Scholar 

  21. Bostwick, D.G. Progression of prostatic intraepithelial neoplasia to early invasive adenocarcinoma. Eur. Urol. 30, 145–152 (1996).

    Article  CAS  Google Scholar 

  22. Isaacs, W. et al. genetic alterations in prostate cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 653–659 (1994).

    Article  CAS  Google Scholar 

  23. Latil, A. & Lidereau, R. Genetic aspects of prostate cancer. Virchows Arch. 432, 389– 406 (1998).

    Article  CAS  Google Scholar 

  24. Dong J.T., Isaacs, W.B . & Isaacs, J.T. Molecular advances in prostate cancer. Curr. Opin. Oncol. 9, 101–107 (1997).

    Article  CAS  Google Scholar 

  25. Lalani, E.N., Stubbs, A. & Stamp, G.W. Prostate cancer; the interface between pathology and basic scientific research. Semin. Cancer Biol. 8, 53–59 (1997).

    Article  CAS  Google Scholar 

  26. Hayward, S.W., Grossfeld, G.D., Tlsty, T.D. & Cunha G.R. Genetic and epigenetic influences in prostatic carcinogenesis. Int. J. Oncol. 13, 35–47 (1998).

    CAS  PubMed  Google Scholar 

  27. MacDougall, J. & Matrisian, L.M. Contribution of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 14, 351–362 (1995).

    Article  CAS  Google Scholar 

  28. McCoy, K. et al. An acid protease secreted by transformed cells interferes with antigen processing. J. Cell Biol. 106, 1879 –1884 (1988).

    Article  CAS  Google Scholar 

  29. Emmert–Buck, M.R. et al. Allelic loss on chromosome 8p12–21 in microdissected prostatic intraepithelial neoplasia (PIN). Cancer Res. 55, 2959–2962 (1995).

    PubMed  Google Scholar 

  30. Bostwick D.G. Prospective origins of prostate carcinoma. Prostatic intraepithelial neoplasia and atypical adenomatous hyperplasia. Cancer 78, 330–336 (1996).

    Article  CAS  Google Scholar 

  31. Eberwine, J. Amplification of mRNA populations using aRNA generated from immobilized oligo(dT)–T7 primed cDNA. Biotechniques 20, 584– 591 (1996).

    CAS  PubMed  Google Scholar 

  32. Bassett, D.E. Jr, Eisen, M.B. & Boguski, M.S. Gene expression informatics—it's all in your mine. Nature Genet. 21, 51– 55 (1999).

    Article  CAS  Google Scholar 

  33. Emmert–Buck, M. et al. Increased gelatinase A and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol. 145, 1285–1290 (1994).

    PubMed  PubMed Central  Google Scholar 

  34. Giometti, C.S., Williams, K. & Tollaksen, S.L. A two–dimensional electrophoresis database of human breast epithelial cell proteins. Electrophoresis 16, 1187–1189 (1997).

    Google Scholar 

  35. Ching J., Voivodov, K.I. & Hutchens, T.W. Polymers as surface–based tethers with photolytic triggers enabling laser–induced release/desorption of covalently bound molecules. Bioconjug. Chem. 7, 525– 528 (1996).

    Article  CAS  Google Scholar 

  36. Kuwata, H. et al. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem. Biophys. Res. Commun. 245, 764 –773 (1998).

    Article  CAS  Google Scholar 

  37. Suzuki, H. et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58, 204–209 (1998).

    CAS  PubMed  Google Scholar 

  38. Wiltshire, R. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 55, 3954 –3957 (1995).

    CAS  PubMed  Google Scholar 

  39. Vocke, C. et al. Analysis of 99 microdissected prostate carcinomas reveals high frequency of allelic loss on chromosome 8p12–21. Cancer Res. 56, 2411–2416 ( 1996).

    CAS  PubMed  Google Scholar 

  40. Bova, G.S. & Isaacs, W.B. Review of allelic loss and gain in prostate cancer. World J. Urol. 14, 338 –346 (1996).

    Article  CAS  Google Scholar 

  41. Emmert–Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  Google Scholar 

  42. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).

    Article  CAS  Google Scholar 

  43. Krizman, D.B. et al. Construction of a representative cDNA library from prostatic intraepithelial neoplasia (PIN). Cancer Res. 56, 5380–5383 (1996).

    CAS  PubMed  Google Scholar 

  44. Levedakou, E.N. et al. Two novel human serine/threonine kinases with homologies to the cell cycle regulating Xenopus MO15, and NIMA kinases: cloning and characterization of their expression pattern. Oncogene 9, 1977–1988 (1994).

    CAS  PubMed  Google Scholar 

  45. Kallajokl, M., Alanen, K.A., Nevalainen, M. & Nevalainen, T.J. Group II phsopholipase A2 in human male reproductive organs and genital tumors. Prostate 35, 263–272 (1998).

    Article  Google Scholar 

  46. Imajoh–Ohmi, S. et al. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cell. Biochem. Biophys. Res. Commun. 217, 1070–1077 ( 1995).

    Article  Google Scholar 

  47. Taylor, I.C. et al. Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative tyrosine kinase. J. Biol. Chem. 270, 6872–6880 ( 1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of the following team members and collaborators of the CGAP Molecular Fingerprinting effort. J.W. Gillespie, V.V. Prabhu, P.J. Munson, R.F. Bonner, A. Lash, D.K. Ornstein, J. Herring, L. Grouse, P.H. Duray, C.D. Vocke, J. Swalwell, M.R. Brown, C. Englert, E.F. Petricoin, S. Pan, J. Pfeifer, C. Johnson, R.D. Klausner, W. M. Linehan, L.A. Liotta and R. Strausberg.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, K., Krizman, D. & Emmert–Buck, M. The genetics of cancer—a 3D model. Nat Genet 21 (Suppl 1), 38–41 (1999). https://doi.org/10.1038/4466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/4466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing