Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness

Abstract

H + -ATPases are ubiquitous in nature; V-ATPases pump protons against an electrochemical gradient, whereas F-ATPases reverse the process, synthesizing ATP. We demonstrate here that mutations in ATP6B1 , encoding the B-subunit of the apical proton pump mediating distal nephron acid secretion, cause distal renal tubular acidosis, a condition characterized by impaired renal acid secretion resulting in metabolic acidosis. Patients with ATP6B1 mutations also have sensorineural hearing loss; consistent with this finding, we demonstrate expression of ATP6B1 in cochlea and endolymphatic sac. Our data, together with the known requirement for active proton secretion to maintain proper endolymph pH, implicate ATP6B1 in endolymph pH homeostasis and in normal auditory function. ATP6B1 is the first member of the H + -ATPase gene family in which mutations are shown to cause human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Features of distal nephron and inner ear H+ secretion.
Figure 2: Linkage of recessive dRTA to chromosome 2p13.
Figure 3: ATP6B1 mutations in dRTA kindreds.
Figure 4: Expression of ATP6B1 in human kidney and cochlea.
Figure 5: Immunolocalization of the H+-ATPase B1-subunit in mouse cochlea and endolymphatic sac.

References

  1. Bastani, B. & Gluck, S.L. New insights into the pathogenesis of distal renal tubular acidosis. Miner. Electrolyte Metab. 22, 396–409 (1996).

    CAS  PubMed  Google Scholar 

  2. Batlle, D.C., Sehy, J.T., Roseman, M.K., Arruda, J.A. & Kurtzman, N.A. Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int. 20, 389–396 ( 1981).

    Article  CAS  Google Scholar 

  3. Lightwood, R. Communication no. 1. Arch. Dis. Child. 10, 205 (1935).

    Article  Google Scholar 

  4. Butler, A.M., Wilson, J.L. & Farber, S. Dehydration and acidosis with calcification at renal tubules. J. Pediatr. 8, 489 ( 1936).

    Article  Google Scholar 

  5. Royer, P. & Broyer, M. L'acidose renale au cours des tubulopathies congenitales. in Proceedings of Actualites Nephrologiques de l'Hopital Necker (Flammarion, Paris, 1967).

    Google Scholar 

  6. Nance, W.E. & Sweeney, A. Evidence for autosomal recessive inheritance of the syndrome of renal tubular acidosis with deafness. Birth Defects Orig. Artic Ser. 7, 70– 72 (1971).

    CAS  Google Scholar 

  7. Walker, W.G. Renal tubular acidosis and deafness. Birth Defects Orig. Artic Ser. 7, 126 (1971).

    CAS  Google Scholar 

  8. Donckerwolcke, R.A., van Biervliet, J.P., Koorevaar, G., Kuijten, R.H. & van Stekelenburg, G.J. The syndrome of renal tubular acidosis with nerve deafness. Acta Paediatr. Scand. 65, 100–104 (1976).

    Article  CAS  Google Scholar 

  9. Brown, M.T., Cunningham, M.J., Ingelfinger, J.R. & Becker, A.N. Progressive sensorineural hearing loss in association with distal renal tubular acidosis. Arch. Otolaryngol. Head Neck Surg. 119, 458–460 (1993).

    Article  CAS  Google Scholar 

  10. Zakzouk, S.M., Sobki, S.H., Mansour, F. & Al Anazy, F.H. Hearing impairment in association with distal renal tubular acidosis among Saudi children. J. Laryngol. Otol. 109, 930–934 (1995).

    Article  CAS  Google Scholar 

  11. Misrahy, G.A., Hildreth, K.M., Clark, L.C. & Shinabarger, E.W. Measurement of the pH of endolymph in the cochlea of guinea pigs. Am. J. Physiol. 194, 393–395 (1958).

    Article  CAS  Google Scholar 

  12. Tasaki, I. & Spyropoulos, C.S. Stria vascularis as source of endocochlear potential. J. Neurophysiol. 22, 149–155 (1959).

    Article  CAS  Google Scholar 

  13. Sellick, P.M. & Johnstone, B.M. Production and role of inner ear fluid. Prog. Neurobiol. 5, 337– 362 (1975).

    Article  CAS  Google Scholar 

  14. Sterkers, O., Saumon, G., Huy, P.T.B., Ferrary, E. & Amiel, C. Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am. J. Physiol. 246, F47–F53 (1984).

    CAS  PubMed  Google Scholar 

  15. Györy, A.K. & Edwards, K.D.G. Renal tubular acidosis. A family with an autosomal dominant genetic defect in renal hydrogen ion transport, with proximal tubular and collecting duct dysfunction and increased metabolism of citrate and ammonia. Am. J. Med. 45, 43–62 (1968).

    Article  Google Scholar 

  16. Bruce, L.J. et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (band 3, AE1) gene. J. Clin. Invest. 100, 1693–1707 (1997).

    Article  CAS  Google Scholar 

  17. Jarolim, P. et al. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J. Biol. Chem. 273, 6380–6388 (1998).

    Article  CAS  Google Scholar 

  18. Karet, F.E. et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc. Natl Acad. Sci. USA 95, 6337– 6342 (1998).

    Article  CAS  Google Scholar 

  19. Lander, E.S. & Botstein, D. Homozygosity mapping—a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 ( 1987).

    Article  CAS  Google Scholar 

  20. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347– 1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson, R.D. et al. Selectively amplified expression of an isoform of the vacuolar H+-ATPase 56-kilodalton subunit in renal intercalated cells. Proc. Natl Acad. Sci. USA 89, 3541– 3545 (1992).

    Article  CAS  Google Scholar 

  22. Stevens, T.H. & Forgac, M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell Dev. Biol. 13, 779–808 (1997).

    Article  CAS  Google Scholar 

  23. Boyer, P.D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 ( 1997).

    Article  CAS  Google Scholar 

  24. Südhof, T.C., Fried, V.A., Stone, D.K., Johnston, P.A. & Xie, X.S. Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria. Proc. Natl Acad. Sci. USA 86, 6067–6071 ( 1989).

    Article  Google Scholar 

  25. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144– 148 (1961).

    Article  CAS  Google Scholar 

  26. Bernasconi, P., Rausch, T., Struve, I., Morgan, L. & Taiz, L. An mRNA from human brain encodes an isoform of the B subunit of the vacuolar H+-ATPase. J. Biol. Chem. 265, 17428–17431 (1990).

    CAS  PubMed  Google Scholar 

  27. Puopolo, K., Kumamoto, C., Adachi, I., Magner, R. & Forgac, M. Differential expression of the "B" subunit of the vacuolar H+-ATPase in bovine tissues. J. Biol. Chem. 267, 3696–3706 (1992).

    CAS  PubMed  Google Scholar 

  28. van Hille, B. et al. Heterogeneity of vacuolar ATPase: differential expression of two human subunit B isoforms. Biochem J. 303, 191–198 (1994).

    Article  CAS  Google Scholar 

  29. Abrahams, J.P., Leslie, A.G.W., Lutter, R. & Walker, J.E. Structure at 2.8 angstrom resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  30. Batlle, D. & Flores, G. Underlying defects in distal renal tubular acidosis: new understandings. Am. J. Kidney Dis. 6, 896–915 (1996).

    Article  Google Scholar 

  31. Stankovic, K.M., Brown, D., Alper, S.L. & Adams, J.C. Localization of pH regulating proteins H+ATPase and Cl/HCO 3 exchanger in guinea pig inner ear. Hearing Res. 114, 21–34 (1997).

    Article  CAS  Google Scholar 

  32. Canlon, B. & Brundin, L. Mechanically induced length changes of isolated outer hair cells are metabolically dependent. Hearing Res. 53, 7–16 ( 1991).

    Article  CAS  Google Scholar 

  33. Cremers, C.W.R.J., Monnens, L.H. & Marres, E.H.M.A. Renal tubular acidosis and sensorineural deafness: an autosomal recessive syndrome. Arch. Otolaryngol. 106, 287–289 (1980).

    Article  CAS  Google Scholar 

  34. Bell, G., Karam, J. & Rutter, W. Polymorphic DNA region adjacent to the 5'-end of the human insulin gene. Proc. Natl Acad. Sci. USA 78, 5759–5763 (1981).

    Article  CAS  Google Scholar 

  35. Craig, H.D. et al. Multilocus linkage identifies two new loci for a Mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum. Mol. Genet. 7, 1851– 1858 (1998).

    Article  CAS  Google Scholar 

  36. Liu, Y-G. & Whittier, R.F. Thermal asymmetric interlaced PCR—automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681 (1995).

    Article  CAS  Google Scholar 

  37. Shimkets, R.A. et al. Liddle's syndrome: heritable human hypertension caused by mutations in the b-subunit of the epithelial sodium channel. Cell 79, 407–414 ( 1994).

    Article  CAS  Google Scholar 

  38. Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993).

    Article  CAS  Google Scholar 

  39. Robertson, N.G., Khetarpal, U., Gutierrez-Espeleta, G.A., Bieber, F.R. & Morton, C.C. Isolation of novel and known genes from a human fetal cochlear library using subtractive hybridization and differential screening. Genomics 23, 42– 50 (1994).

    Article  CAS  Google Scholar 

  40. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by guanidinium isothiocyanate phenol chloroform extraction. Anal. Biochem. 162, 156– 159 (1987).

    Article  CAS  Google Scholar 

  41. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the families for their invaluable contribution to this study; W.G. Walker for provision of kindred RTA2; C. Nelson-Williams for management of the DNA database; T. Mansfield for development and implementation of the fluorescence-labelled genotyping panel; H. Rye for assistance with crystallographic interpretation; C. Hecht for provision of adult cochlear epithelium; T. Hasson for advice and provision of anti-myosin VI antibody; D. Biemesderfer for provision of mouse kidney sections; and H. Craig, D. Geller, A. Gharavi and M. Kashgarian for helpful discussions. C.C.M. and A.B.S. are supported in part by NIH grant DCO3402. F.E.K. is a Fellow of the Wellcome Trust. K.E.F. is an investigator of the Medical Scientist Training Program. R.P.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Lifton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karet, F., Finberg, K., Nelson, R. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21, 84–90 (1999). https://doi.org/10.1038/5022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing