Short telomeres on human chromosome 17p

Abstract

Human chromosomes terminate in a series of T2AG3 repeats1, which, together with associated proteins, are essential for chromosome stability2,3. In somatic cells, these sequences are known to be gradually lost through successive cells divisions4,5; however, information about changes on specific chromosomes is not available. Individual telomeres could mediate important biological effects as was shown in yeast, in which loss of a single telomere results in cell-cycle arrest and chromosome loss6. We now demonstrate by quantitative fluorescence in situ hybridization (Q-FISH; ref. 7) that the number of T2AG3 repeats on specific chromosome arms is very similar in different tissues from the same donor and varies only to some extent between donors. In all sixteen individuals studied, telomeres on chromosome 17p were shorter than the median telomere length—a finding confirmed by analysis of terminal restriction fragments from sorted chromosomes. These observations provide evidence of chromosome-specific factors regulating the number of T2AG3 repeats in individual telomeres and raise the possibility that the relatively short telomeres on chromosome 17p contribute to the frequent loss of 17p alleles in human cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Moyzis, R.K. et al. A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natal. Acad. Sci. USA 85, 6622–6626 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Blackburn, E.H. & Greider, C.W., eds., Telomeres (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  3. 3

    Blasco, M.A . et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Sandell, L.L. & Zakian, V.A. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729–739 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Lansdorp, P.M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Ijdo, J.W., Baldini, A., Ward, D.C., Reeders, ST. & Wells, R.A. Origin of human chromosome 2: an ancestral telomere–telomere fusion. Proc. Natal. Acad. Sci. USA 88, 9051–9055 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Zijlmans, J.M.J.M. et al. Telomeres in the mouse have large inter–chromosomal variations in the number of T2AG3 repeats. Proc. atal. Acad. Sci. USA 94, 7423–7428 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Allshire, R.C., Dempster, M. & Hastie, N.D. Human telomeres contain at least three types of G–rich repeats distributed non–randomly. Nucleic Acids Res. 17, 4611–4627 (1989).

    CAS  Article  Google Scholar 

  11. 11

    Zakian, V.A. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30, 141–172 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natal. Acad. Sci. USA 91, 9857–9860 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Slagboom, P.E., Droog, S. & Boomsma, D.I. Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet. 55, 876–882 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    de Lange, T. Telomere dynamics and genome instability in human cancer, in Telomeres (eds Blackburn, E.H. & Greider, C.W.) 265–293 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1995).

  16. 16

    Cornelis, R.S. et al. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors with p53 mutations. Cancer Res. 54, 4200–4206 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Makos Wales, M. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Med. 1, 570–577 (1995).

    Article  Google Scholar 

  18. 18

    White, G.R.M. et al. High levels of loss at the 17p telomere suggest the close proximity of a tumour suppressor, fir. J. Cancer 74, 863–870 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Seizinger, B.R. et al. Report of the committee on chromosome and gene loss in human neoplasia . Cytogenet. Cell Genet 58, 1080–1096 (1991).

    Article  Google Scholar 

  20. 20

    Hastie, N.D. & Allshire, R.C. Human telomeres: fusion and interstitial sites. Trends Genet. 5, 326–330(1989).

    CAS  Article  Google Scholar 

  21. 21

    Saltman, D., Morgan, R., Cleary, M.L. & de Lange, T. Telomeric structure in cells with chromosome end associations. Chromosoma 121–128 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Murnane, J.P., Sabatier, L., Marder, B.A. & Morgan, W.F. Telomere dynamics in an immortal human cell line. EMBO J. 13, 4953–4962 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Kirk, K.E., Harmon, B.P., Reichardt, I.K., Sedat, J.W. & Blackburn, E.H. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275, 1478–1481 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Meltzer, P.S., Guan, X.-Y. & Trent, J.M. Telomere capture stabilizes chromosome breakage. Nature Genet. 4, 252–255 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Wilkie, A.O.M., Lamb, J., Harris, P.C., Finney, R.D. & Higgs, D.R. A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n . Nature 346, 868–871 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Baker, S.J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Deng, G., Lu, Y, Zlotnikov, G., Thor, A.D. & Smith, H.S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Lansdorp, P.M., & Dragowska, W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J. Exp. Med. 175, 1501–1509 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Hanish, J.P., Yanowitz, J.L. & de Lange, T. Stringent sequence requirements for the formation of human telomeres. Proc. Natal. Acad. Sci. USA 91, 8861–8865 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Monard, S.P. & Young, B.D. Chromosome analysis by flow cytometry. in Human Chromosomes: Principles and Techniques, Vol. 2 (eds Verma, R.S. & Babu, A.) 172–180 (McGraw-Hill, New York, 1995).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter M. Lansdorp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martens, U., Zijlmans, J., Poon, S. et al. Short telomeres on human chromosome 17p. Nat Genet 18, 76–80 (1998). https://doi.org/10.1038/ng0198-76

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing