Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neocentromere activity of structurally acentric mini-chromosomes in Drosophila

Abstract

Chromosome fragments that lack centromeric DNA (structurally acentric chromosomes) are usually not inherited in mitosis and meiosis. We previously described the isolation, after irradiation of a Drosophila melanogaster mini-chromosome, of structurally acentric mini-chromosomes that display efficient mitotic and meiotic transmission despite their small size (under 300 kb) and lack of centromeric DNA. Here we report that these acentric mini-chromosomes bind the centromere-specific protein ZW10 and associate with the spindle poles in anaphase. The sequences in these acentric mini-chromosomes were derived from the tip of the X chromosome, which does not display centromere activity or localize ZW10, even when separated from the rest of the X. We conclude that the normally non-centromeric DNAs present in these acentric mini-chromosomes have acquired centromere function, and suggest that this example of ‘neocentromere’ formation involves appropriation of a self-propagating centromeric chromatin structure. The potential relevance of these observations to the identity, propagation and function of normal centromeres is discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pluta, A.F., Mackay, A.M, Ainsztein, A.M., Goldberg, I.G. & Earnshaw, W.C. The centromere: hub of chromosomal activities. Science 270, 1591–1594 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein, L.S. Kinetochore structure and its role tn chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25, 591–602 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Brinkley, B.R. Chromosomes, kinetochores and the microtubule connection. B/oessays 13, 675–681 (1991).

    CAS  Google Scholar 

  4. Palmer, D.K., O'Day, K., Trong, H.L.,, Charbonneau, H., & Margolis, R.L, Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. USA 88, 3734–3738 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sullivan, K.F., Hechenberger, M. & Masri, K., Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, M.T. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160, 111–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Meluh, P.B. & Koshland, D., Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stoler, S., Keith, K.C., Curnick, K.E., & Fitzgerald-Hayes, M. A, mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Starr, D.A. et al. Conservation of the centromere/kinetochore protein ZW10. J. Cell Biol. 138, 1289–1301 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wevrick, R., Willard, V.P., & Willard, H.F., Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14, 912–923 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Le, M.-H., Duricka, D. & Karpen, G.H. Islands of complex DNA are widespread in Drosophila centric heterochromatin. Genetics 141, 283–303 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lohe, A.R. & Hilliker, A.J. Return of the H-word (heterochromatin). Curr. Opin. Genet. Dev. 5, 746–755 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Karpen, G.H . & Allshire, R. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Page, S.L, Earnshaw, W.C., Choo, K.H.A. & Shatter, L.G. Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum. Mol. Genet. 4, 289–294 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Steiner, N.C. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan, B.A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Voullaire, L.E., Slater, H.R., & Choo, K.H.A. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am. J. Hum. Genet. 52, 1153–1163 (1993).

    CAS  Google Scholar 

  18. Brown, W. & Tyler-Smith, C. Centromere activation. Trends Genet. 11, 337–339 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Depinet, T.W. et al. Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum. Mol. Genet. 6, 1195–1204 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. du Sart, D., et al. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nature Genet. 16, 144–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Karpen, G.H. & Spradling, A.C. Analysis of sub-telomeric heterochromatin in the Drosophila mini-chromosome Dp1187 by single P element insertional mutagenesis. Genetics 132, 737–753 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy, T.D. & Karpen, G.H. Localization of centromere function in a Drosophila mini-chromosome. Cell 82, 599–609 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, X., Wahlstrom, J. & Karpen, G.H. Molecular structure of a functional Drosophila centromere. Cell 91, (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mather, K. & Stone, L.H.A. The effects of X-radiation upon somatic chromosomes. J. Genet. 28, 1–24 (1933).

    Article  Google Scholar 

  25. Rieder, C.L, Davison, E.A., Jensen, L.C., Cassimeris, L. & Salmon, E.D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Khodjakov, A., Cole, R.W., Bajer, A.S. & Rieder, C.L. The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase. J. Cell Biol. 132, 1093–1104 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Williams, B.C., Karr, T.L, Montgomery, J.M. & Goldberg, M.L The Drosophila I(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J. Cell Biol. 118, 759–773 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Williams, B.C. & Goldberg, M.L. Determinants of Drosophila zw10 protein localization and function. J Cell Sci. 107, 785–798 (1994).

    CAS  PubMed  Google Scholar 

  29. Williams, B.C., Gatti, M. & Goldberg, M.L Bipolar spindle attachments affect redistributions of ZW10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation. J. Cell Biol. 134, 1127–1140 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Rudner, A.D. & Murray, A.W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Murphy, T.D. & Karpen, G.H. Interactions between the nod+ kinesin-like gene and extracentromeric sequences are required for transmission of a Drosophila mini-chromosome. Cell 81, 139–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Cook, K.R., Murphy, T.D., Nguyen, T.C. & Karpen, G.H. Identification of trans-acting genes necessary for centromere function in Drosophila melanogaster using centromere-defective mini-chromosomes. Genetics 145, 737–747 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Theurkauf, W.E. & Hawley, R.S. Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol. 116, 1167–1180 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Afshar, K., Barton, N.R., Hawley, R.S. & Goldstein, L.S.B. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell 81, 129–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Karpen, G.H. & Spradling, A.C. Reduced DNA polytenization of a mini-chromosome region undergoing position-effect variegation in Drosophila. Cell 63, 97–107 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tower, J., Karpen, G.H., Craig, N. & Spradling, A.C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–359 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mason, J.M. & Biessmann, H. The unusual telomeres of Drosophila. Trends Genet. 11, 58–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Lindsley, D.L. & Zimm, G.G. The Genome of Drosophila Melanogaster (Academic, San Diego, California, 1992).

    Chapter  Google Scholar 

  39. Golic, K.G. Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137, 551–563 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonner, J.J., Parks, C., Parker-Thornburg, J., Mortin, M.A. & Pelham, H.R. The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37, 979–991 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Cenci, G. et al. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. 11, 863–875 (1997).

  42. Rhoades, M.M. Heterosis (ed. Gowen, J.W.) 66-80 (Iowa State College, Ames, Iowa, 1952).

    Google Scholar 

  43. Dawe, R.K. & Cande, W.Z. Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc, Natl. Acad. Sci. USA 93, 8512–8517 (1996).

    Article  CAS  Google Scholar 

  44. Alfenito, M.R. & Birchler, J.A. Molecular characterization of a maize B chromosome centric sequence. Genetics 135, 589–597 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pimpinelli, S. & Goday, C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 5, 310–315 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Albertson, D.G., Rose, A.M. & Villeneuve, A.M. The Nematode C. Elegans (eds Riddle, D.L, Blumenthal, T, Meyer, B.J. & Priess, J.R.) 47–78 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  47. Herzing, L.B.K., Romer, J.T., Horn, J.M. & Ashworth, A. Xist has properties of the X-chromosome inactivation centre. Nature 386, 272–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Ajiro, K. & Nishimoto, T. Specific site of histone H3 phosphorylation related to the maintenance of premature chromosome condensation: evidence for catalytically induced interchange of the subunits. J. Biol. Chem. 260, 15379–15381 (1985).

    CAS  PubMed  Google Scholar 

  49. Turner, B. & O'Neill, L. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6, 229–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Wolffe, A. & Pruss, D. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 84, 817–819 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Karpen, G.H. Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Genet. Dev. 4, 281–291 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Clarke, L, Baum, M., Marschall, L.G., Ngan, V.K. & Steiner, N.C. Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harb. Symp. Quant Biol. 58, 687–695 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Allshire, R.C., Javerzat, J.P., Redhead, N.J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell 76, 157–169 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Marschall, L.G. & Clarke, L. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J. Cell Biol. 128, 445-454 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Ngan, V.K. & Clarke, L. The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. Mol. Cell Biol. 17, 3305–3314 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haaf, T., Warburton, P.E. & Willard, H.F. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell 70, 681–696 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Larin, Z., Fricker, M.D. & Tyler-Smith, C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum. Mol. Genet. 3, 689–695 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, S.S., Larin, Z. & Tyler-Smith, C. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma 105, 70–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Warburton, P.E. & Cooke, HJ. Hamster chromosomes containing amplified human oc-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation. Chromosoma 106, 149–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Therman, E., Sarto, G.E. & Patau, K. Apparently isodicentric but functionally monocentric X chromosome in man. Am. J. Hum. Genet. 26, 83–92 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Merry, D.E., Pathak, S., Hsu, T.C. & Brinkley, B.R. Anti-kinetochore antibodies: use as probes for inactive centromeres. Am. J. Hum. Genet. 37, 425–430 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Earnshaw, W.C., Ratrie, H. & Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98, 1–12 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Ault, J.G. & Lyttle, T.W. A transmissible dicentric chromosome in Drosophila melanogaster. Chromosoma 97, 71–79 (1988).

    Article  Google Scholar 

  65. Lindsley, D.L. & Tokuyasu, K.T. in The Genetics and Biology of Drosophila (eds Ashburner, M. & Wright, T.R.F.) 225–294 (Academic, London, 1980).

  66. McKee, B.D. & Karpen, G.H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell 61, 61–72 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B., Murphy, T., Goldberg, M. et al. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18, 30–38 (1998). https://doi.org/10.1038/ng0198-30

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0198-30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing