Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental strategies for the genetic dissection of complex traits in animal models

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hu, S. et al. Linkage between sexual orientation and chromosome Xq28 in males but not in females. Nature Genet. 11, 248–256 (1995)

    CAS  Article  Google Scholar 

  2. 2

    Satsangi, J. et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genet. 14, 199–202 (1996)

    CAS  Article  Google Scholar 

  3. 3

    Hanis, C.L et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nature Genet. 13, 161–166 (1996)

    CAS  Article  Google Scholar 

  4. 4

    Mahtani, M.M. et al. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nature Genet. 14, 90–94 (1996)

    CAS  Article  Google Scholar 

  5. 5

    Ginns, E.I. et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nature Genet. 12, 431–435 (1996)

    CAS  Article  Google Scholar 

  6. 6

    Hugot, J.P. et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16.Nature 379, 821–823 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet. 13, 464–468 (1996)

    CAS  Article  Google Scholar 

  8. 8

    Ebers, G.C. et al. A full genome search in multiple sclerosis. Nature Genet. 13, 472–476 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Daniels, S.E. et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 383, 247–250 (1996)

    CAS  Article  Google Scholar 

  10. 10

    Flint, J. et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435 (1995)

    CAS  Article  Google Scholar 

  11. 11

    Frankel, W.N., Johnson, E.W. & Lutz, C.M. Congenic strains reveal effects of the epilepsy quantitative trait locus, EI2, separate from other El loci. Mamm. Genome 6, 839–843 (1995)

    CAS  Article  Google Scholar 

  12. 12

    Melo, J.A., Shendure, J., Pociask, K. & Silver, LM. Identification of sex specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genet. 13, 147–153 (1996)

    CAS  Article  Google Scholar 

  13. 13

    Berrettini, W.H., Ferraro, T.N., Alexander, R.C., Buchberg, A.M. & Vogel, W.H. Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Genet. 7, 54–58 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Moen, C.J.A., Groot, P.C., Hart, A.A.M., Snoek, M. & Demant, P. Fine mapping of colon tumor susceptibility (Sec) genes in the mouse, different from the genes known to be somatically mutated in colon cancer. Proc. Na tl. Acad. Sci. USA 93, 1082–1086 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Manenti, G. et al. Genetic mapping of a pulmonary adenoma resistance locus (Par!) in mouse. Nature Genet. 12, 455–457 (1996)

    CAS  Article  Google Scholar 

  16. 16

    Taylor, B.A., Phillips, S.J. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DMA pooling. Genomics 34, 389–398 (1996)

    CAS  Article  Google Scholar 

  17. 17

    Rubattu, S. et al. Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nature Genet. 13, 429–434 (1996)

    CAS  Article  Google Scholar 

  18. 18

    Stuber, C.W. Mapping and manipulating quantitative traits in maize. Trends Genet. 11, 477–481 (1995)

    CAS  Article  Google Scholar 

  19. 19

    McCouch, S.R. & Doerge, R.W. QTL mapping in rice. Trends Genet. 11, 482–487 (1995)

    CAS  Article  Google Scholar 

  20. 20

    Haley, C.S. Livestock QTLs-bringing home the bacon? Trends Genet. 11, 488–492 (1995)

    CAS  PubMed  Google Scholar 

  21. 21

    Kemp, S.J., Iraqi, F., Darvasi, A., Soller, M. & Teale, A.J. Localization of genes controlling resistance to trypanosomiasis in mice. Nature Genet. 16, 194–196

    CAS  Article  Google Scholar 

  22. 22

    Soller, M., Genizi, A. & Brody, T. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47, 35–39 (1976)

    CAS  Article  Google Scholar 

  23. 23

    Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–246 (1995)

    CAS  Article  Google Scholar 

  26. 26

    Jansen, R.C. & Stam, P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136, 1447–1455 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Korol, A.B., Ronin, Y.I. & Kirzhner, V.M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140, 1137–1147 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Changjian, J., Zeng, Z.B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127 (1995)

    Google Scholar 

  30. 30

    Motro, U. & Soller, M. Sequential sampling in determining linkage between marker loci and quantitative trait loci. Theor. Appl. Genet. 85, 658–664 (1993)

    CAS  Article  Google Scholar 

  31. 31

    Lebowitz, R.J., Soller, M. & Beckmann, J.S. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in cross between inbred lines. Theor. Appl. Genet. 73, 556–562 (1987)

    CAS  Article  Google Scholar 

  32. 32

    Darvasi, A. & Soller, M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 85, 353–359 (1992

    CAS  Article  Google Scholar 

  33. 33

    Darvasi, A. & Soller, M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative locus. Genetics 138, 1365–1373 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Darvasi, A. & Soller, M. Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci. Theor. Appl. Genet. 89, 351–357 (1994)

    CAS  Article  Google Scholar 

  35. 35

    Elston, R.C., Guo, X. & Williams, L.V. Two-stage global search for linkage analysis using pairs of affected relatives. Genetic Epidemiology 13, 535–558 (1996)

    CAS  Article  Google Scholar 

  36. 36

    Falconer, D.S. & Mackay, T. Introduction to Quantitative Genetics (Longman, New York, 1996>)

  37. 37

    Silver, L.M. Mouse Genetics: Concepts and Applications. (Oxford University Press, New York and Oxford, 1995)

  38. 38

    Haley, C.S. & Knott, S.A. A simple regression method for mapping quantitative loci in line crosses using flanking markers. Heredity 69, 315–324 (1992)

    CAS  Article  Google Scholar 

  39. 39

    Zeng, Z.B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Na tl. Acad. Sci. USA 90, 10972–10976 (1993)

    CAS  Article  Google Scholar 

  40. 40

    Jansen, R.C. Interval mapping of multiple quantitative trait loci. Genetics 135, 205–211 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Darvasi, A. Weinreb, A., Minke, V., Weller, J.I. & Seller, M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134, 943–951 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Mangin, B., Goffinet, B. & Rebai, A. Constructing confidence intervals for QTL location. Genetics 138, 1301–1308 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Visscher, P.M., Thompson, R. & Haley, C.S. Confidence intervals in QTL mapping by bootstrapping. Genetics 143, 1013–1020 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Darvasi, A. & Seller, M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet. 27, 125–132 (1997)

    CAS  Article  Google Scholar 

  45. 45

    Darvasi, A. & Seller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Breese, E.L. & Mather, K. The organization of polygenic activity within a chromosome in Drosophila: 1.Hair characters. Heredity 11, 373–395 (1957)

    Google Scholar 

  47. 47

    Davies, R.W. The genetic relationship of two quantitative characters in D. melanogaster. II. Location of the effects. Genetics 69, 363–375 (1971)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Shrimpton, A.E. & Robertson, A. The isolation of factors controlling bristle score in Drosophila melanogaster: II Distribution of third chromosome bristle effects within chromosome sections. Genetics 118, 445–459 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Shrimpton, A.E. & Robertson, A. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. I. Allocation of third chromosome sternopleural bristle effects to chromosome sections. Genetics 118, 437–443 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Paterson, A.M., DeVerna, J.W., Lanini, B. & Tanksley, S.D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124, 735–742 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon penhellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Alpert, K.B. & Tanksley, S.D . High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc. Na tl. Acad. Sci. USA 93, 15503–15507 (1996)

    CAS  Article  Google Scholar 

  53. 53

    Darvasi, A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm. Genome 8, 163–167 (1997)

    CAS  Article  Google Scholar 

  54. 54

    Jacob, H.J. Genetic mapping of a gene causing hypertension in stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991)

    CAS  Article  Google Scholar 

  55. 55

    Rapp, J.P. & Deng, A.Y. Detection and positional cloning of blood pressure quantitative trait loci: is it possible? Hypertension 25, 1121–1128 (1995)

    CAS  PubMed  Google Scholar 

  56. 56

    van Wezel, T. et al. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nature Genet. 14, 468–470 (1996)

    CAS  Article  Google Scholar 

  57. 57

    Fijneman, R.J.A., de Vries, S.S., Jansen, R.C. & Demant, P. Complex interactions of new quantitative trait loci, Slud, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genet. 14, 465–467 (1996)

    CAS  Article  Google Scholar 

  58. 58

    Frankel, W.N. & Schork, N.J. Who's afraid of epistasis? Nature Genet. 14, 371–373 (1996)

    CAS  Article  Google Scholar 

  59. 59

    Rothschild, M. et al. The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Na tl. Acad. Sci. USA 93, 201–205 (1996)

    CAS  Article  Google Scholar 

  60. 60

    Ebstein, R.P. et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nature Genet. 12, 78–80 (1996)

    CAS  Article  Google Scholar 

  61. 61

    Benjamin, J. et al. Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genet. 12, 81–84 (1996)

    CAS  Article  Google Scholar 

  62. 62

    Crabbe, J.C. et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nature Genet. 14, 98–101 (1996)

    CAS  Article  Google Scholar 

  63. 63

    Konig, M. et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383, 535–538 (1996)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18, 19–24 (1998). https://doi.org/10.1038/ng0198-19

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing