Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

UBE3A/E6-AP mutations cause Angelman syndrome

An Erratum to this article was published on 01 April 1997

Abstract

Angelman syndrome (AS), characterized by mental retardation, seizures, frequent smiling and laughter, and abnormal gait, is one of the best examples of human disease in which genetic imprinting plays a role1. In about 70% of cases, AS is caused by de novo maternal deletions at 15q11–q13 (ref. 2). Approximately 2% of AS cases are caused by paternal uniparental disomy (UPD) of chromosome 15 (ref. 3) and 2–3% are caused by ‘imprinting mutations’ 4. In the remaining 25% of AS cases, no deletion, uniparental disomy (UPD), or methylation abnormality is detectable, and these cases, unlike deletions or UPD, can be familial5–7. These cases are likely to result from mutations in a gene that is expressed either exclusively or preferentially from the maternal chromosome 15. We have found that a 15q inversion inherited by an AS child from her normal mother disrupts the 5′ end of the UBE3A (E6-AP) gene, the product of which functions in protein ubiquitination16. We have looked for novel UBE3A mutations in nondeletion/non-UPD/non-imprinting mutation (NDUI) AS patients and have found one patient who is heterozygous for a 5-bp de novo tandem duplication. We have also found in two brothers a heterozygous mutation, an A to G transition that creates a new 3′ splice junction 7 bp upstream from the normal splice junction. Both mutations are predicted to cause a frameshift and premature termination of translation. Our results demonstrate that UBE3A mutations are one cause of AS and indicate a possible abnormality in ubiquitin-mediated protein degradation during brain development in this disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Williams, C.A. et al. Angelman syndrome. Curr. Probl. Pediatr. 25, 216–231 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Knoll, J.H.M. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Wagstaff, J. et al. Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Clayton-Smith, J. . et al. Further evidence for dominant inheritance at the chromosome 15q11-13 locus in familial Angelman syndrome. Am. J. Med. Genet. 44, 256–260 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Meijers-Heijboer, E.J. . J. et al. Linkage analysis with chromosome 15q11-13 markers shows genomic imprinting in familial Angelman syndrome. J. Med. Genet. 29, 853–857 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Reed, M.L. & Leff, S.E. Maternal imprinting of human SNRPN, 6, 163–167 (1994).

  9. 9

    Sutcliffe, J.S. . S. et al. Deletions of a differentially methylated CpG island at the SNRPN 8, 52–58 (1994).

  10. 10

    Wevrick, R., Kerns, J.A. & Francke, U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum. Molec. Genet.. 3, 1877–1882 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Ning, Y. et al. Identification of a novel paternally expressed transcript adjacent to snRPN in the Prader-Willi syndrome critical region. Genome Res. 6, 735–741 (1996).

    Article  Google Scholar 

  12. 12

    Burke, L.W. et al. Familial cryptic translocation resulting in Angelman syndrome: implications for imprinting or location of the Angelman gene? Am. J. Hum. Genet. 58, 777–784 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Greger, V., Reis, A. & Lalande, M. The critical region for Angelman syndrome lies between D15S122 and D15S113. Am. J. Med. Genet. 53, 396–398 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Woodage, T. et al. Physical mapping studies at D15S10: implications for candidate gene identification in the Angelman syndrome/ Prader-Willi syndrome chromosome region of 15q11-q13. Genomics. 19, 170–172 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Nakao, M. et al. Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Molec. Genet. 3, 309–315 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol.Cell. Biol. 13, 775–784 (1993).

    CAS  Article  Google Scholar 

  17. 17

    Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA. 92, 2563–2567 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Cooper, D.N. & Krawczak, M. Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum. Genet. 87, 409–415 (1991).

    CAS  Google Scholar 

  19. 19

    Knoll, J.H.M., Glatt, K.A., Nicholls, R.D., Malcolm, S. & Lalande, M. Chromosome 15 uniparental disomy is not frequent in Angelman syndrome. Am. J. Hum. Genet. 48, 16–21 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wagstaff, J., Shugart, Y.Y. & Lalande, M. Linkage analysis in familial Angelman syndrome. Am. J. Hum. Genet. 53, 105–112 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Giddings, S.J., Harman, K.W., Flood, J.F. & Carnaghi, L. R. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Ekstrom, T.J., Cui, H., Li, X. & Ohlsson, R. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 121, 309–316 (1995).

    CAS  PubMed  Google Scholar 

  24. 24

    Deltour, L., Montagutelli, X., Guenet, J.-L., Jami, J. & Paldi, A. Tissue- and developmental stage-specific imprinting of the mouse proinsulin gene. Ins2. Dev. Biol. 168, 686–688 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Kalscheuer, V.M., Mariman, E.C., Schepens, M.T., Rehder, H. & Ropers, H.-H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genet. 5, 74–78 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Pearsall, R.S. . S. et al. Absence of imprinting in U2AFBPL, a human homologue of the imprinted mouse gene U2afbp-rs. Biochem. Biophys. Res. Comm. 222, 171–177 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Riesewijk, A.M., Schepens, M.T., Mariman, E.M., Ropers, H.-H. & Kalscheuer, V.M., MAS proto-oncogene is not imprinted. Genomics 35, 380–382 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Vu, T.H. & Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-ll gene. Nature 371, 714–717 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Chung, W.-Y., Yuan, L., Feng, L., Hensle, T. & Tycko, B. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors. Hum. Molec. Genet. 5, 1101–1108 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 373, 81–83 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Muralidhar, M.G. & Thomas, J.B., The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11, 253–266 (1993).

    CAS  Article  Google Scholar 

  32. 32

    Palombella, V.J., Rando, O.J., Goldberg, A.L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-KB1 precursor protein and the activation of NF-KB. Cell 78, 773–785 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Church, D.M., Stotler, C.J., Rutter, J.L., Murrell, J.R., Trofatter, J.A. & Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15, 70–73 (1997). https://doi.org/10.1038/ng0197-70

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing