Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in TWIST, a basic helix–loop–helix transcription factor, in Saethre-Chotzen syndrome

Abstract

Saethre-Chotzen syndrome is one of the most common autosomal dominant disorders of craniosynostosis in humans and is characterized by craniofacial and limb anomalies. The locus for Saethre-Chotzen syndrome maps to chromosome 7p21–p22. We have evaluated TWIST, a basic helix–loop–helix transcription factor, as a candidate gene for this condition because its expression pattern and mutant phenotypes in Drosophila and mouse are consistent with the Saethre-Chotzen phenotype. We mapped TWIST to human chromosome 7p21–p22 and mutational analysis reveals nonsense, missense, insertion and deletion mutations in patients. These mutations occur within the basic DNA binding, helix I and loop domains, or result in premature termination of the protein. Studies in Drosophila indicate that twist may affect the transcription of fibroblast growth factor receptors (FGFRs), another gene family implicated in human craniosynostosis. The emerging cascade of molecular components involved in craniofacial and limb development now includes TWIST, which may function as an upstream regulator of FGFRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Saethre, H. Ein Eitrag zum Turmschadelproblem(Pathogenese, Erbuchkeit und Symptomologie).DtschZNervenheilkd 117, 533–555 (1931).

    Google Scholar 

  2. Chotzen, F. Eine eigenartige familiare Entwicklungsstorung (Akrocephalosyndaktylie, Dysostosis craniofacialis und Hypertelorismus). MonatschrKinderheilkdSS, 97–122 (1932).

  3. Cohen, M.M. Jr., Craniosynostosis: diagnosis, evaluation, and management 467–471 (Raven, New York, 1986).

    Google Scholar 

  4. Gorlin, R.J., Cohen, M.M., & Levin, L.S. Syndromes of the Head and Neck, Syndromes with Craniosynostosis: General Aspects and Well-Known Syndromes, Edn. 3, 799 (Oxford University Press, 1990).

    Google Scholar 

  5. Brueton, L.A., van Herwerden, L, Chotai, K.A . & Winter, R.M. The mapping of a gene for Craniosynostosis: evidence for linkage of the Saethre-Chotzen syndrome to distal chromosome 7p. L Med. Genet. 29, 681–685 (1992).

    Article  CAS  Google Scholar 

  6. Lewanda, A. et al. Genetic heterogeneity among Craniosynostosis syndromes: mapping the Saethre-Chotzen syndrome locus between D7S513 and D7S516 and exclusion of Jackson-Weiss and Crouzon syndrome loci from 7p. Genomics 19, 115–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. van Herwerden, L. et al. van Herwerden, L. Evidence for locus heterogeneity in acrocephalosyndactyly: a refined localization for the Saethre-Chotzen syndrome locus on distal chromosome 7p and exclusion of Jackson-Weiss syndrome from Craniosynostosis loci on 7p and 5q. Am. J. Hum. Genet. 54, 669–674 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reid, C.S. et al.. Saethre-Chotzen syndrome with familial translocation at chromosome 7p22. Am. J. Med.Genet. 47, 637–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Reardon, W., McManus, S.P., Summers, D. & Winter, R.M. Cytogenetic evidence that the Saethre-Chotzen syndrome gene maps to 7p21. 2. Am. J. Med. Genet. 47, 633–636 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Lewanda, A.F. et al.. Evidence that the Saethre-Chotzen syndrome locus lies between D7S664 and D7S507, by genetic analysis and detection of a microdeletion in a patient. Am. J. Hum. Genet. 55, 1195–1201 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rose, C.S.P. . et al. Localization of the genetic locus for Saethre-Chotzen syndrome to a 6 cM region of chromosome 7 using four cases with apparently balanced translocations at 7p21.2. Hum. Mol. Genet. 3, 1405–1408 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Wilkie, A.O.M. . et al. Saethre-Chotzen syndrome associated with balanced translocations involving 7p21: three further families. J. Med. Genet. 32, 174–180 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsuji, K. et al. Craniosynostosis and hemizygosity for D7S135 caused by a de novo and apparently balanced t(6;7) translocation. Am. J. Med. Genet. 45, 108–110 (1994).

    Google Scholar 

  14. Murre, C. < et al. Structure and function of helix-loop-helix proteins. Biochimica et Biophysica Acta 1218, 129–135 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Thisse, B., Gorostiza-Thisse, C. & Perrin-Schmitt, F. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7, 2175–2183 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hopwood, N.D., Pluck, A. & Gurdon, J.B. Xenopus twist is expressed in response to induction in the mesoderm and the neural crest. Cell 59, 893–879 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Wolf, C. et al. The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev. Biol 143, 363–373 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, S.M. et al. Cloning of the human TWIST gene: Its expression is retained in adult mesodermally-derived tissues. Gene (in the press).

  19. Goodman, B.K., Green, E.D., Lewanda, A.F., Rosengren, S. & Jabs, E.W. Molecular cytogenetic analysis of chromosome 7p anomalies and clinical correlation with Saethre-Chotzen syndrome. Am. J. Hum. Genet. 57, A114 (1995).

    Google Scholar 

  20. Krebs, I., Schelbert, A., Hudler, M., Tsuji, K. & Kunz, J. Physical mapping of the 7p15. 3–21 region and analysis of a t(6;7) patient with Craniosynostosis. Meeting on Genome Mapping and Sequencing, 140 (Cold Spring Harbor, NY, 1996).

  21. Mattei, M.G., Stoetzel, C. & Perrin-Schmitt, F. The B-HLH protein encoding the M-twist gene is located by in situ hybridization on murine chromosome 12. Mamm. Genome 4, 127–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. DeBry, R.W. & Seldin, M.F. Human/Mouse homology relationships. Genomics 33, 337–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Dubois, B.L. & Naylor, S.L. Characterization of NIGMS human/rodent somatic cell hybrid mapping panel 2 by PCR. Genomics 16, 315–319 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Von Gernet, S. et al. Craniosynostosis suggestive of Saethre-Chotzen syndrome: Clinical description of a large kindred and exclusion of candidate regions on 7p. Am. J. Med. Genet. 63, 177–184 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Voronova, A. & Baltimore, D. Mutations that disrupt DNA binding and dimer formation in the E47 helix–loop–helix protein map to distinct domains. Proc. Natl. Acad. Sci.USA 87, 4722–4726 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steingrimsson, E. et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their development and phenotypic consequences. Nature Genet. 8, 256–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Tassabehji, M., Newton, V.E. & Read, A.P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet. 8, 251–255 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Simpson, P. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 105, 615–632 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoetzel, C., Weber, B., Bourgeois, P., Bolcato-Bellemin, A.L. & Perrin-Schmitt, F. Dorso-ventral and rostro-caudal sequential expression of M-twist in the postimplantation murine embryo. Mechan. Dev. 51, 251–263 (1995).

    Article  CAS  Google Scholar 

  30. Fuchtbauer, E.M. Expression of M-Twist during postimplantation development of the mouse. Dev. Dynamics 204, 316–322 (1995).

    Article  CAS  Google Scholar 

  31. Murray, S.S. et al. 1993 Expression of helix–loop–helix regulatory genes during differentiation of mouse osteoblastic cells. J Bone Miner. Res. 10, 1132–1138 (1992).

    Google Scholar 

  32. Chen, Z.-F. & Behringer, R.R. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Reardon, W. et al. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Jabs, E.W. et al. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2 (erratum appears in Nature Genet. 9,451(1995)) Nature Genet. 8, 275–279 (1994).

    Article  Google Scholar 

  35. Park, W.-J. et al. Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability. Hum. Mol. Genet. 4, 1229–1233 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Shishido, E., Higashijima, S., Emori, Y. & Saigo, K., FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117, 751–761 (1993).

    CAS  PubMed  Google Scholar 

  37. Emori, Y. & Saigo, K. Distinct expression of two Drosophila homologs of fibroblast growth factor receptors in imaginal discs. FEBS,332, 111–114 (1993).

    Article  CAS  Google Scholar 

  38. Albertsen, H.M. et al. Construction and characterization of a yeast artificial chromosome library containing seven haploid genome equivalents. Proc. Natl. Acad. Sci. USA 87, 4256–4260 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green, E.D. et al. A human chromosome 7 yeast artificial chromosome (YAC) resource: Construction, characterization, and screening. Genomics 25, 170–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Meyers, G.A., Orlow, S.A., Munro, I.R., Przylepa, K.A. & Jabs, E.W. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nature Genet. 11, 462–464 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Francke, U., Gonzalez, y., Rivera, E.L., Delgado, C.G., Ramos, M.G. Saethre-Chotzen syndrome (SCS) with additional abnormalities in a Mexican family. New Syndromes, Part B, Annu. Rev. Birth Defects, 13, 241 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, T., Paznekas, W., Green, E. et al. Mutations in TWIST, a basic helix–loop–helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 15, 36–41 (1997). https://doi.org/10.1038/ng0197-36

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing