Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma

Protein complexes consisting of a cyclin-dependent kinase (CDK4 or CDK6) and cyclin D control passage through the G1 checkpoint of the cell cycle by phosphorylating the retinoblastoma (RB) protein1. The ability of these complexes to phosphorylate RB is inhibited by a family of low molecular weight proteins including p16INK4a (refs 2,3), p15iNK4B (ref 4)? and p18 (ref 5) Germline mutations in the p16INK4a gene have been identified in approximately half of families with hereditary melanoma6–12. In this report, we describe an Arg24Cys mutation in CDK4 in two unrelated melanoma families which do not carry germline p16INK4a mutations6. This mutation was detected in 11/11 melanoma patients, 2/17 unaffecteds and 0/5 spouses. The CDK4-Arg24Cys substitution has previously been identified as a somatic mutation in a melanoma that gives rise to a tumour-specific antigen recognized by autologous cytolytic T lymphocytes13. This mutation has a specific effect on the p16INK4a binding domain of CDK4, but has no effect on its ability to bind cyclin D and form a functional kinase13. Therefore, the germline Arg24Cys mutation in CDK4 generates a dominant oncogene that is resistant to normal physiological inhibition by p16INK4a. The only previous example of a dominant oncogene transmitted in the human germline is the RET gene that gives rise to MEN2A14,15 and MEN2B16.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sherr, C.J. Mammalian G1 cyclins. cell. 73, 1059–1065 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 366, 704–707 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Serrano, M., Gomez-Lahoz, E., DePinho, R., Beach, D. & Bar-Sagi, D. Inhibition of Ras-induced proliferation and cellular transformation by p16INK4. Science. 267, 249–252 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Hannon, G.J. & Beach, D. pl5INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature. 371, 257–261 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Guan, K-L. et al. Growth suppression of p18, a P16INK4/MTS1 and p14iNK4BMrs2_re|ated CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8, 2939–2952 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Hussussian, C.J. et al. Germline p16 mutations in familial melanoma. Nature Genet. 8, 15–21 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8, 22–26 (1994).

    CAS  Article  Google Scholar 

  8. 8

    MacGeoch, C. et al. Genetic heterogeneity in familial malignant melanoma Hum. Molec. Genet. 3, 2195–2200 (1994).

    CAS  Google Scholar 

  9. 9

    Gruis, N.A. et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genet. 10, 351–353 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Ohta, M. et al. Rarity of somatic and germline mutations of the cyclin dependent kinase 4 inhibitor gene, CDK4I, in melanoma. Cancer Res. 54, 5269–5272 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Liu, L. et al. .Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene. 11, 405–412 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Walker, G.J. et al. .Mutations of the CDKN2/ p16INK4 gene in Australian melanoma kindreds. Hum. Molec. Genet. 4, 1845–1852 (1995).

    CAS  Google Scholar 

  13. 13

    Wotfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 269, 1281–1284 (1995).

    Article  Google Scholar 

  14. 14

    Mulligan, L.M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 363, 458–460 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Donis-Keller, H. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Molec. Genet. 2, 851–856 (1993).

    CAS  Google Scholar 

  16. 16

    Hofstra, R.M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 367, 375–376 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Goldstein, A.M., Dracopoli, N.C., Engelstein, M., Fraser, M.C., Clark, W.H., & Tucker, M.A. Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. Am. J. Hum. Genet. 54, 489–496 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Goldstein, A.M. et al. Further evidence for a locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) on chromosome 1 p and evidence for genetic heterogeneity. Am. J. hum. Genet. 52, 537–550 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Ranade, K. et al. Mutations associated with familial melanoma impair p16INK4 function. Nature Genet. 10, 114–116 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Hanks, S.K. Homology probing: Identification of cDNA clones encoding members of the protein-serine kinase family. Proc. Natl. Acad. Sci. USA. 84, 388–392 (1987).

    CAS  Article  Google Scholar 

  21. 21

    Demetrick, D.J., Zhang, H. & Beach, D.H. Chromosomal mapping of human CDK2, CDK4 and CDK6 cell cycle kinase genes. Cyfogenef. Cell Genet. 66, 72–74 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Fountain, J.W., Bale, S.J., Housman, D.E. & Dracopoli, N.C. Genetics of melanoma. Cancer Surv. 9, 645–671 (1990).

    CAS  PubMed  Google Scholar 

  23. 23

    Nancarrow, D.J. et al. Confirmation of chromosome 9p linkage in familial melanoma. Am. J. Hum. Genet. 53, 936–942 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Laird, R.W, Jaenisch, R. DNA methylation and cancer. Hum. Molec. Genet. 3, 1487–1495 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Otterson, G.A., Kratzke, R.A., Coxon, A., Kirn, Y.W. & Kaye, F.J. Absence of p16iNK4 is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene. 9, 3375–3378 (1994).

    CAS  PubMed  Google Scholar 

  26. 26

    Khatib, Z.A. et al. Coamplification of the CDK4 gene with MDM2 and GLI. in human sarcomas. Cancer Res. 53, 5535–5541 (1993).

    CAS  PubMed  Google Scholar 

  27. 27

    Ladanyi, M. et al. MDM2 and CDK4 gene amplification in Ewing's sarcoma. J. Pathol. 175, 211–217 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Schmidt, E.E., Ichimura, K., Reifenberger, G. & Collins, V.R. CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 54, 6321–6324 (1994).

    CAS  PubMed  Google Scholar 

  29. 29

    He, J. et al. CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 54, 5804–5807 (1994).

    CAS  PubMed  Google Scholar 

  30. 30

    Separation Technique File No.131: PCR-SSCP Analysis. Pharmacia Biotech, Alameda, Ca. (1995).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zuo, L., Weger, J., Yang, Q. et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12, 97–99 (1996). https://doi.org/10.1038/ng0196-97

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing