Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy

A Correction to this article was published on 01 June 1995

Abstract

Nemaline myopathies are diseases characterized by the presence in muscle fibres of pathognomonic rod bodies. These are composed largely of α–actinin and actin. We have identified a missense mutation in the α–tropomyosin gene, TPM3, which segregates completely with the disease in a family whose autosomal dominant nemaline myopathy we had previously localized to chromosome 1p13–q25. The mutation substitutes an arginine residue for a highly conserved methionine in a putative actin–binding site near the N terminus of the α–tropomyosin. The mutation may strengthen tropomyosin – actin binding, leading to rod body formation, by adding a further basic residue to the postulated actin–binding motif.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bodensteiner, J.B. Congenital myopathies. Muscle Nerve 17, 131–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Shy, G., Engel, W., Somers, J. & Wanko, T. Nemaline myopathy: a new congenital myopathy. Brain 86, 793–810 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Conen, P.E., Murphy, E.G. & Donohue, W.L. Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Can. Med. Ass. J. 89, 983–986 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McKusick, V.A. Mendelian inheritance in man 10th edn (Johns Hopkins University Press, Baltimore and London, 1992).

    Google Scholar 

  5. Laing, N.G. et al. Assignment of a gene (NEM1) for autosomal dominant nemaline myopathy to chromosome 1. Am. J. hum. Genet. 50, 576–583 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Eyre, H.J. et al. Assignment of the human slow skeletal muscle troponin gene (TNNI1) to 1q32 by fluorescence in situ hybridisation. Cytogenet. Cell Genet. 62, 181–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Akkari, P.A. et al. Assignment of the human skeletal muscle α actin gene (ACTA1) to 1q42 by fluorescence in situ hybridisation. Cytogenet. Cell Genet. 65, 265–267 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Wilton, S.D. et al. Assignment of the human α tropmyosin gene TPM3 to 1q22–23 by fluorescence in situ hybridisation. Cytogenet Cell Genet. 68, 122–124 (1994).

    Article  Google Scholar 

  9. Gunning, P. et al. Differential control of tropomyosin mRNA levels during myogenesis suggests the existence of an isoform competition-autoregulatory compensation control mechanism. Dev. Biol. 138, 443–453 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. McAlpine, P.J., Shows, T.B., Boucheix, C., Pericak-Vance, M.A. & Anderson, W.A. in Chromosome coordinating meeting (1992). (eds Cuticchia, A.J., Pearson, P.L. & Klinger, H.P.). 11–142 (Karger, Basel, 1993).

    Google Scholar 

  11. Clayton, L., Reinach, F.C., Chumbley, G.M. & MacLeod, A.R. Organization of the hTMnm gene. Implications for the evolution of muscle and non-muscle tropomyosins. J. molec. Biol. 201, 507–515 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Wolfe, S.L. Molecular and cellular biology. 451–494 (Wadsworth Publishing Company, Belmont, 1993).

    Google Scholar 

  13. Thierfelder, L. et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  14. Geisterfer-Lowrance, A.A.T. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Price, H.M., Gordon, G.B., Pearson, C.M., Munsat, T.L. & Blumberg, J.M. New evidence for excessive accumulation of Z-band material in nemaline myopathy. Proc. natn. Acad. Sci. U.S.A. 54, 1398–1406 (1965).

    Article  CAS  Google Scholar 

  16. NIH/CEPH Collaborative Mapping Group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  17. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Ott, J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am. J. hum. Genet. 26, 588–597 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DMA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Tahvanalnen, E., Beggs, A.H. & Wallgren-Pettersson, C. Exclusion of two candidate loci for autosomal recessive nemaline myopathy. J. med. Genet. 31, 79–80 (1994).

    Article  Google Scholar 

  21. Cho, Y.-J., Liu, J. & Hitchcock-DeGregori, S.E. The amino terminus of muscle tropomyosin is a major determinant for function. J. biol. Chem. 265, 538–545 (1990).

    CAS  PubMed  Google Scholar 

  22. Yonezawa, N. et al. An actin-interacting heptapeptide in the cofilin sequence. Eur. J. Biochem. 183, 235–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Hitchcock-DeGregori, S.E. & Vamell, T.A. Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J. molec. Biol. 214, 885–896 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Hayasaka, K. et al. Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin Po gene. Nature Genet. 5, 31–34 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Eyre, H. et al. Assignment of the human skeletal muscle a tropomyosin gene TPM1 to 15q22 by fluorescence in situ hybridisation. Cytogenet. Cell Genet. (in the press).

  26. Beggs, A.H. et al. A (CA)n repeat polymorphism for the skeletal muscle α-actinin gene ACTN2 and its localisation on the CEPH consortium linkage map of chromosome 1. Genomics 13, 1314–1315 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Wilton, S.D., Johnsen, R.D., Pedretti, J.R. & Laing, N.G. Two distinct mutations in a single dystrophin gene: identification of an altered splice-site as the primary becker muscular dystrophy mutation. Am. J. med. Genet. 46, 563–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. MacLeod, A.R. & Gooding, C. Human hTM-α gene: expression in muscle and non–muscle tissue. Molec. cell. Biol. 8, 433–440 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Widada, J.S., Ferraz, C., Capony, J.-P. & Liautard, J.-P. Complete nucleotide sequence of the adult human skeletal muscle b-tropomyosin. Nucl. Acids Res. 16, 3109 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mak, A.S., Smillie, L.B. & Stewart, G.R. A comparison of the amino acid sequences of rabbit skeletal muscle α- and β-tropomyosins. J. biol. Chem. 255, 3647–3655 (1980).

    CAS  PubMed  Google Scholar 

  31. Ruiz-Opazo, N. & Nadal-Ginard, B. α-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J. biol. Chem. 262, 4755–4765 (1987).

    CAS  PubMed  Google Scholar 

  32. Helfman, D.M., Feramisco, J.R., Ricci, W.M. & Hughes, S.H. Isolation and sequence of a cDNA clone that contains the entire coding region for chicken smooth-muscle a-tropomyosin. J. biol. Chem. 259, 14136–14143 (1984).

    CAS  PubMed  Google Scholar 

  33. Hardy, S., Fiszman, M.Y., Osborne, H.B. & Thiebaud, P. Characterization of muscle and non muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene. Eur. J. Biochem. 202, 431–440 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Hardy, S. & Thiebaud, P. Isolation and characterization of cDNA clones encoding the skeletal and smooth muscle Xenopus laevis β tropomyosin isoforms. Biochem. Biophys. Acta 1131, 239–242 (1992).

    CAS  PubMed  Google Scholar 

  35. Meedel, T.H. & Hastings, K.E.M. Striated muscle-type tropomyosin in a chordate smooth muscle, ascidian body-wall muscle. J. biol. Chem. 268, 6755–6764 (1993).

    CAS  PubMed  Google Scholar 

  36. Karlik, C.C., Mahaffey, J.W., Coutu, M.D. & Fyrberg, E.A. Organization of contractile protein genes within the 88F subdivision of the D. melanogaster third chromosome. Cell 37, 469–481 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Baader, C.D., Schmid, V. & Schuchert, P. Characterization of a tropomyosin cDNA from the hydrozoan Podocoryne camea. FEBS Letts. 328, 63–66 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laing, N., Wilton, S., Akkari, P. et al. A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9, 75–79 (1995). https://doi.org/10.1038/ng0195-75

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0195-75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing