Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA)

Abstract

Hereditary dentatorubral–pallidoluysian atrophy (DRPLA) is an autosomal dominant neurologic disorder characterized by variable combinations of myoclonus, epilepsy, cerebellar ataxia, choreoathetosis and dementia. By specifically searching published brain cDNA sequences for the presence of CAG repeats we identified unstable expansion of a CAG in a gene on chromosome 12 in all the 22 DRPLA patients examined. A good correlation between the size of the CAG repeat expansion and the ages of disease onset is found in this group. Patients with earlier onset tended to have a phenotype of progressive myoclonus epilepsy and larger expansions. We propose that the wide variety of clinical manifestations of DRPLA can now be explained by the variable unstable expansion of the CAG repeat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick V.A., Francomano, C.A. & Antonarakis, S.E. Mendelian Inheritance of Man. 10th edn 305–306 (The Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  2. Naito, H. & Oyanagi, S. Familial myoclonus epilepsy and choreoathetosis: Hereditary dentatorubral-pallidoluysian atrophy. Neurol. 32, 798–807 (1982).

    Article  CAS  Google Scholar 

  3. Takahashi, H. et al. Hereditary dentatorubral-pallidoluysian atrophy: Clinical and pathologic variants in a family. Neurol. 38, 1065–1070 (1988).

    Article  CAS  Google Scholar 

  4. Smith, J.K., Gonda, V.E. & Malamud, N. Unusual form of cerebellar ataxia: Combined dentato-rubral and pallido-Luysian degeneration. Neurol. 8, 205–209 (1958).

    Article  CAS  Google Scholar 

  5. Naito, H. Progressive myoclonus epilepsy and DRPLA (in Japanese). Shinkei Kenkyu no Shinpo 34, 56–67 (1990).

    Google Scholar 

  6. Kondo, I. et al. Exclusion mapping of the hereditary dentatorubro pallidoluysian atrophy gene from the Huntington's disease locus. J. med. Genet. 27, 105–108 (1990).

    Article  CAS  Google Scholar 

  7. Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  Google Scholar 

  8. Knight, S.J.L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  Google Scholar 

  9. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fishbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  10. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  Google Scholar 

  11. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  Google Scholar 

  12. Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1259 (1992).

    Article  CAS  Google Scholar 

  13. Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    Article  CAS  Google Scholar 

  14. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  Google Scholar 

  15. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  16. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  17. Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1.. Nature Genet. 4, 295–299 (1993).

    Article  CAS  Google Scholar 

  18. Nechiporuk, S.-M.P.A. & Starkman, S. Anticipation in spinocerebellar ataxia type 2. Nature Genet. 5, 8–10 (1993).

    PubMed  Google Scholar 

  19. Takiyama, Y. et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet. 4, 300–304 (1993).

    Article  CAS  Google Scholar 

  20. Riggins, G.J. et al. Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  Google Scholar 

  21. Li, S.-H. et al. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics 16, 572–579 (1993).

    Article  CAS  Google Scholar 

  22. Tomoda, A., Ikezawa, M., Ohtani, Y., Miike, T. & Kumamoto, T. Progressive myoclonus epilepsy: Dentato-rubro-pallido-luysian atrophy (DRPLA) in childhood. Brain Dev. 13, 266–269 (1991).

    Article  CAS  Google Scholar 

  23. Naito, H., Izawa, K., Kurosaki, T., Kaji, S. & Sawa, M. Two families of progressive myoclonus epilepsy with Mendelian dominant heredity (in Japanese). Psychiatr. Neurol. Jpn 74, 871–897 (1972).

    CAS  Google Scholar 

  24. Naito, H. et al. A family of dentatorubro-pallidoluysian atrophy (DRPLA) including two cases with schizophrenic symptoms (in Japanese). Psychiatr. Neurol. Jpn 89, 144–158 (1987).

    CAS  Google Scholar 

  25. Miyashita, K. et al. Hereditary dentatorubro-pallidoluysian atrophy. — Clinical variants in a family and degeneration of cerebral white matter in a proband — (in Japanese). Brain Nerve 44, 279–284 (1992).

    CAS  PubMed  Google Scholar 

  26. Morioka, E. et al. An autopsy case of dentatorubro-pallidoluysian atrophy showing marked atrophy of the brain stem (in Japanese). Brain Nerve 39, 769–773 (1987).

    CAS  PubMed  Google Scholar 

  27. Nakano, T. et al. An autopsy case of dentatorubro-pallidoluysian atrophy (DRPLA) clinically diagnosed as Huntington's chorea (In Japanese). Brain Nerve 37, 767–774 (1985).

    CAS  PubMed  Google Scholar 

  28. Akashi, T., Ando, J., Inose, T., Uemura, H. & Mizushima, S. Dentato-rubro-pallido-luysian atrophy: A clinico-neuropathological study (in Japanese). Rinsho Seishin Igaku 16, 1163–1172 (1987).

    Google Scholar 

  29. Iwabuchi, K. et al. A clinicopathological study on autosomal dominant hereditary dentatorubro-pallidoluysian atrophy (Naito-Oyanagi's disease) (in Japanese). Shinkei Kenkyu no Shinpo 37, 678–691 (1993).

    Google Scholar 

  30. Iizuka,R. & Hirayama, K. Dentato-rubro-pallido-luysian atrophy. In Handoook of Clinical Neurology Vol 49 (eds Vinken, P. J., Bruyn, G. W. & Klawans, H. L. ) 437–143 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  31. Iizuka, R., Hirayama, K. & Maehara, K. Dentato-rubro-pallido-luysian atrophy: a clinico-pathological study. J. neurol. neurosurg. Psychiat. 47, 1288–1298 (1984).

    Article  CAS  Google Scholar 

  32. Smith, J.K. dentatorubro-pallidoluysian atrophy. In Handbook of Clinical Neurology, Vol 21 (eds Vinken, P. J. & Bruyn, G. W. ) 519–534 (North-Holland, Amsterdam, 1975).

    Google Scholar 

  33. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  Google Scholar 

  34. Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  Google Scholar 

  35. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  Google Scholar 

  36. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Coning: A Laboratory Manual. 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  37. Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nuci. Acids Res. 19,1154 (1991).

    Article  CAS  Google Scholar 

  38. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  39. Chen, E.Y. & Seeburg, P.M. Supercoil sequencing: A first and simple method for sequencing plasmid DNA. DNA 4, 165–170 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koide, R., Ikeuchi, T., Onodera, O. et al. Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nat Genet 6, 9–13 (1994). https://doi.org/10.1038/ng0194-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0194-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing