Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A thyroid hormone receptor that is required for the development of green cone photoreceptors

Abstract

Color vision is facilitated by distinct populations of cone photoreceptors in the retina. In rodents, cones expressing different opsin photopigments are sensitive to middle (M, 'green') and short (S, 'blue') wavelengths, and are differentially distributed across the retina1,2. The mechanisms that control which opsin is expressed in a particular cone are poorly understood2,3, but previous in vitro studies implicated thyroid hormone in cone differentiation4,5. Thyroid hormone receptor β2 (TRβ2) is a ligand-activated transcription factor that is expressed in the outer nuclear layer of the embryonic retina6,7. Here we delete Thrb (encoding Trβ2) in mice, causing the selective loss of M-cones and a concomitant increase in S-opsin immunoreactive cones. Moreover, the gradient of cone distribution is disturbed, with S-cones becoming widespread across the retina. The results indicate that cone photoreceptors throughout the retina have the potential to follow a default S-cone pathway and reveal an essential role for Trβ2 in the commitment to an M-cone identity. Our findings raise the possibility that Thrb mutations may be associated with human cone disorders8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the Trβ2 exon.
Figure 2: Expression of Trβ2 in eye development.
Figure 3: Absence of M-cones and altered distribution of S-cones from Trβ2-deficient mice.
Figure 4: Loss of M-opsin mRNA and premature expression of S-opsin.
Figure 5: Defective cone responses in Trβ2-deficient mice.

Similar content being viewed by others

References

  1. Wang, Y. et al. A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429– 440 (1992).

    Article  CAS  Google Scholar 

  2. Szel, A., Lukats, A., Fekete, T., Szepessy, Z. & Rohlich, P. Photoreceptor distribution in the retinas of subprimate mammals. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 17 , 568–579 (2000).

    Article  CAS  Google Scholar 

  3. Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589– 595 (1996).

    Article  CAS  Google Scholar 

  4. Kelley, M.W., Turner, J.K. & Reh, T.A. Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Development 121, 3777 –3785 (1995).

    CAS  PubMed  Google Scholar 

  5. Kelley, M.W., Turner, J.K. & Reh, T.A. Regulation of proliferation and photoreceptor differentiation in fetal human retinal cell cultures. Invest. Ophthalmol. Vis. Sci. 36, 1280–1289 ( 1995).

    CAS  PubMed  Google Scholar 

  6. Hodin, R.A. et al. Identification of a thyroid hormone receptor that is pituitary-specific . Science 244, 76–78 (1989).

    Article  CAS  Google Scholar 

  7. Sjöberg, M., Vennström, B. & Forrest, D. Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors. Development 114, 39– 47 (1992).

    PubMed  Google Scholar 

  8. Newell, F.W. & Diddie, K.R. Typical monochromacy, congenital deafness, and resistance to intracellular action of thyroid hormone. Klin. Monatsbl. Augenheilkd. 171, 731– 734 (1977).

    CAS  PubMed  Google Scholar 

  9. Wood, W.M., Ocran, K.W., Gordon, D.F. & Ridgway, E.C. Isolation and characterization of mouse complementary DNAs encoding α and β thyroid hormone receptors from thyrotrope cells: the mouse pituitary-specific β2 isoform differs at the amino terminus from the corresponding species from rat pituitary tumor cells. Mol. Endocrinol. 5, 1049–1061 (1991).

    Article  CAS  Google Scholar 

  10. Ng, L., Forrest, D., Haugen, B.R., Wood, W.M. & Curran, T. LN-Terminal variants of thyroid hormone receptor β: differential function and potential contribution to syndrome of resistance to thyroid hormone. Mol. Endocrinol. 9, 1202–1213 (1995).

    CAS  PubMed  Google Scholar 

  11. Sjöberg, M. & Vennström, B. Ligand-dependent and -independent transactivation by thyroid hormone receptor β2 is determined by the structure of the hormone response element. Mol. Cell. Biol. 15, 4718–4726 ( 1995).

    Article  Google Scholar 

  12. Langlois, M.-F. et al. A unique role of the β-2 thyroid hormone receptor isoform in negative regulation by thyroid hormone. J. Biol. Chem. 272, 24927–24933 (1997).

    Article  CAS  Google Scholar 

  13. Bradley, D.J., Towle, H.C. & Young, W.S. III α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA 91, 439–443 ( 1994).

    Article  CAS  Google Scholar 

  14. Forrest, D. et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: evidence for tissue-specific modulation of receptor function. EMBO J. 15, 3006– 3015 (1996).

    Article  CAS  Google Scholar 

  15. Forrest, D., Sjöberg, M. & Vennström, B. Contrasting developmental and tissue-specific expression of α and β thyroid hormone receptor genes. EMBO J. 9, 1519–1528 ( 1990).

    Article  CAS  Google Scholar 

  16. Szel, A., Rohlich, P., Mieziewska, K., Aguirre, G. & van Veen, T. Spatial and temporal differences between the expression of short- and middle-wave sensitive cone pigments in the mouse retina: a developmental study. J. Comp. Neurol. 331, 564–577 (1993).

    Article  CAS  Google Scholar 

  17. Rohlich, P., van Veen, T. & Szel, A. Two different visual pigments in one retinal cone cell . Neuron 13, 1159–1166 (1994).

    Article  CAS  Google Scholar 

  18. Szel, A., van Veen, T. & Rohlich, P. Retinal cone differentiation. Nature 370, 336 (1994).

    Article  CAS  Google Scholar 

  19. Lyubarsky, A.L., Falsini, B., Pennesi, M.E., Valentini, P. & Pugh, E.N. Jr., UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J. Neurosci. 19, 442–455 (1999).

    Article  CAS  Google Scholar 

  20. Chiu, M.I. & Nathans, J. A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas. Vis. Neurosci. 11, 773– 780 (1994).

    Article  CAS  Google Scholar 

  21. Abel, E.D. et al. Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system. J. Clin. Invest. 104, 291–300 (1999).

    Article  CAS  Google Scholar 

  22. Rüsch, A., Erway, L., Oliver, D., Vennström, B. & Forrest, D. Thyroid hormone receptor β-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc. Natl. Acad. Sci. USA 95, 15758– 15762 (1998).

    Article  Google Scholar 

  23. Sjöberg, M. Expression and Function of Chicken Thyroid Hormone Receptors Thesis, Karolinska Institute (1994).

    Google Scholar 

  24. Browman, H.I. & Hawryshyn, C.W. The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine. Vision Res. 34, 1397–1406 (1994).

    Article  CAS  Google Scholar 

  25. Dacey, D.M. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23, 743–775 (2000).

    Article  CAS  Google Scholar 

  26. Refetoff, S., Weiss, R.E. & Usala, S.J. The syndromes of resistance to thyroid hormone. Endocrine Rev. 14, 348–399 (1993).

    CAS  Google Scholar 

  27. Akhmedov, N.B. et al. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 97, 5551–5556 ( 2000).

    Article  CAS  Google Scholar 

  28. Haider, N.B. et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nature Genet. 24, 127–131 ( 2000).

    Article  CAS  Google Scholar 

  29. Chomez, P. et al. Increased cell death and delayed development in the cerebellum of mice lacking the rev-erbA(α) orphan receptor. Development 127, 1489–1498 ( 2000).

    CAS  PubMed  Google Scholar 

  30. Göthe, S. et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth and bone maturation . Genes Dev. 13, 1329–1341 (1999).

    Article  Google Scholar 

  31. Bayer, A. et al. Comparisons of the amplitude size and the reproducibility of three different electrodes to record the corneal flash electroretinogram in rodents. Doc. Ophthalmol. 98, 233– 246 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Nathans for opsin antibodies; C. Stewart for W9.5 ES cells; W. Wood for TrβcDNAs, A.F. Parlow for reagents for TSH studies; I. Lisoukov for assistance with hormone assays; and the ES Cell Facility at the Department of Human Genetics, Mount Sinai School of Medicine, and the Transgenic Facility at the Karolinska Institute for assistance. This work was supported in part by grants from the National Institutes of Health (D.F., J.B.H., T.A.R.), the Swedish Medical Research Council and Swedish Cancer Fund (B.V) and by the Human Frontiers Science Program (D.F., B.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas A. Reh or Douglas Forrest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, L., Hurley, J., Dierks, B. et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27, 94–98 (2001). https://doi.org/10.1038/83829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing