Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A biochemical function for attractin in agouti-induced pigmentation and obesity

Abstract

Agouti protein, a paracrine signaling molecule normally limited to skin, is ectopically expressed in lethal yellow (Ay) mice, and causes obesity by mimicking agouti-related protein (Agrp), found primarily in the hypothalamus. Mouse attractin (Atrn) is a widely expressed transmembrane protein whose loss of function in mahogany (Atrnmg-3J/ Atrnmg-3J) mutant mice blocks the pleiotropic effects of Ay. Here we demonstrate in transgenic, biochemical and genetic-interaction experiments that attractin is a low-affinity receptor for agouti protein, but not Agrp, in vitro and in vivo. Additional histopathologic abnormalities in Atrnmg-3J/Atrnmg-3J mice and cross-species genomic comparisons indicate that Atrn has multiple functions distinct from both a physiologic and an evolutionary perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Atrn mRNA as determined by in situ or northern-blot hybridization.
Figure 2: Spongy degeneration in Atrnmg-3J/Atrnmg-3J mice.
Figure 3: Effect of Atrn transgenes on coat color.
Figure 4: Biochemical interaction of ATRNEc with agouti protein or Agrp.
Figure 5: Interaction of Atrnmg-3J with A or Agrp in vivo.
Figure 6: Evolutionary conservation of Atrn.
Figure 7: Atrn is an accessory receptor for agouti protein.

Similar content being viewed by others

References

  1. Jackson, I.J. Molecular and developmental genetics of mouse coat color. Annu. Rev. Genet. 28, 189–217 (1994).

    Article  CAS  Google Scholar 

  2. Millar, S.E., Miller, M.W., Stevens, M.E. & Barsh, G.S. Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development 121, 3223–3232 (1995).

    CAS  PubMed  Google Scholar 

  3. Willard, D.H. et al. Agouti structure and function: characterization of a potent α-melanocyte stimulating hormone receptor antagonist. Biochemistry 34, 12341–12346 (1995).

    Article  CAS  Google Scholar 

  4. Michaud, E.J. et al. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc. Natl. Acad. Sci. USA 91, 2562–2566 ( 1994).

    Article  CAS  Google Scholar 

  5. Duhl, D.M.J. et al. Pleiotropic effects of the mouse lethal yellow (A(y)) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs. Development 120, 1695–1708 (1994).

    CAS  PubMed  Google Scholar 

  6. Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J. & Baskin, D.G. Central nervous system control of food intake. Nature 404, 661– 671 (2000).

    Article  CAS  Google Scholar 

  7. Shutter, J.R. et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 11, 593–602 (1997).

    Article  CAS  Google Scholar 

  8. Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  Google Scholar 

  9. Eberle, A.N. The Melanotropins: Chemistry, Physiology and Mechanism of Action (Karger, Basel, 1988).

    Google Scholar 

  10. Cone, R.D. et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog. Horm. Res. 51, 287–318 (1996).

    CAS  PubMed  Google Scholar 

  11. Rosenfeld, R.D. et al. Biochemical, biophysical, and pharmacological characterization of bacterially expressed human agouti-related protein. Biochemistry 37, 16041–16052 ( 1998).

    Article  CAS  Google Scholar 

  12. Lu, D.S. et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371, 799– 802 (1994).

    Article  CAS  Google Scholar 

  13. Yang, Y.K. et al. Effects of recombinant agouti-signaling protein on melanocortin action. Mol. Endocrinol. 11, 274– 280 (1997).

    Article  CAS  Google Scholar 

  14. Yang, Y.K. et al. Characterization of Agouti-related protein binding to melanocortin receptors. Mol. Endocrinol. 13, 148– 155 (1999).

    Article  CAS  Google Scholar 

  15. Graham, M., Shutter, J.R., Sarmiento, U., Sarosi, I. & Stark, K.L. Overexpression of Agrt leads to obesity in transgenic mice. Nature Genet. 17, 273–274 (1997).

    Article  CAS  Google Scholar 

  16. Robbins, L.S. et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834 ( 1993).

    Article  CAS  Google Scholar 

  17. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  Google Scholar 

  18. Lane, P.W. & Green, M.C. Mahogany, a recessive color mutation in linkage group V of the mouse. J. Hered. 51, 228–230 (1960).

    Article  Google Scholar 

  19. Miller, K.A. et al. Genetic studies of the mouse mutations mahogany and mahoganoid . Genetics 146, 1407–1415 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Duke-Cohan, J.S. et al. Attractin (DPPT-L), a member of the CUB family of cell adhesion and guidance proteins, is secreted by activated human T lymphocytes and modulates immune cell interactions. Proc. Natl. Acad. Sci. USA 95, 11336–11341 (1998).

    Article  CAS  Google Scholar 

  21. Gunn, T.M. et al. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 398, 152– 156 (1999).

    Article  CAS  Google Scholar 

  22. Nagle, D.L. et al. The mahogany protein is a receptor involved in suppression of obesity. Nature 398, 148– 152 (1999).

    Article  CAS  Google Scholar 

  23. Tang, W. et al. Secreted and membrane attractin result from alternative splicing of the human ATRN gene. Proc. Natl. Acad. Sci. USA 97, 6025–6030 (2000).

    Article  CAS  Google Scholar 

  24. Ollmann, M.M., Lamoreux, M.L., Wilson, B.D. & Barsh, G.S. Interaction of Agouti protein with the melanocortin 1 receptor in vitro and in vivo. Genes Dev. 12, 316– 330 (1998).

    Article  CAS  Google Scholar 

  25. Dinulescu, D.M. & Cone, R.D. Agouti and agouti-related protein: analogies and contrasts. J. Biol. Chem. 275 , 6695–6698 (2000).

    Article  CAS  Google Scholar 

  26. Dinulescu, D.M. et al. Mahogany (mg) stimulates feeding and increases basal metabolic rate independent of its suppression of agouti. Proc. Natl. Acad. Sci. USA 95, 12707–12712 (1998).

    Article  CAS  Google Scholar 

  27. Lu, X. et al. Distribution of mahogany/attractin mRNA in the rat central nervous system. FEBS Lett. 462, 101– 107 (1999).

    Article  CAS  Google Scholar 

  28. Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86, 1563–1567 (1989).

    Article  CAS  Google Scholar 

  29. Mackenzie, M.A., Jordan, S.A., Budd, P.S. & Jackson, I.J. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev. Biol. 192, 99– 107 (1997).

    Article  CAS  Google Scholar 

  30. Perry, W.L. et al. Coupled site-directed mutagenesis/transgenesis identifies important functional domains of the mouse agouti protein. Genetics 144, 255–264 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kucera, G.T., Bortner, D.M. & Rosenberg, M.P. Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev. Biol. 173, 162–173 (1996).

    Article  CAS  Google Scholar 

  32. Kiefer, L.L. et al. Mutations in the carboxyl terminus of the agouti protein decrease agouti inhibition of ligand binding to the melanocortin receptors. Biochemistry 36, 2084–2090 (1997).

    Article  CAS  Google Scholar 

  33. Jackson, I.J. The mahogany mouse mutation: further links between pigmentation, obesity and the immune system. Trends Genet. 15, 429 –431 (1999).

    Article  CAS  Google Scholar 

  34. Fuh, G., Garcia, K.C. & de Vos, A.M. The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor Flt-1. J. Biol. Chem. 275, 26690–26695 (2000 ).

    Article  CAS  Google Scholar 

  35. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation . Development 126, 4895– 4902 (1999).

    CAS  PubMed  Google Scholar 

  36. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276– 280 (1999).

    Article  CAS  Google Scholar 

  37. Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H. & Fujisawa, H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 4309–4318 (1995).

    CAS  PubMed  Google Scholar 

  38. Quistad, G.B. & Skinner, W.S. Isolation and sequencing of insecticidal peptides from the primitive hunting spider, Plectreurys tristis (Simon). J. Biol. Chem. 269, 11098–11101 (1994).

    CAS  PubMed  Google Scholar 

  39. Takeuchi, S., Teshigawara, K. & Takahashi, S. Widespread expression of Agouti-related protein (AGRP) in the chicken: a possible involvement of AGRP in regulating peripheral melanocortin systems in the chicken. Biochim. Biophys. Acta 1496 , 261–269 (2000).

    Article  CAS  Google Scholar 

  40. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  Google Scholar 

  41. Shimizu, M., Murakami, Y., Suto, F. & Fujisawa, H. Determination of cell adhesion sites of neuropilin-1. J. Cell Biol. 148, 1283–1293 (2000).

    Article  CAS  Google Scholar 

  42. Little, C.C. The occurence of three recognized color mutations in mice. Am. Nat. 50, 335–349 ( 1916).

    Article  Google Scholar 

  43. Lamoreux, M.L. & Galbraith, D.B. DK/Lm: a strain of laboratory mouse with an unusual expression of the lethal yellow (Ay) phenotype . Genet. Res. 48, 35–40 (1986).

    Article  CAS  Google Scholar 

  44. Suto, J., Wakamatsu, K., Yamanaka, H., Ito, S. & Sekikawa, K. Quantitative trait loci that modify the sootiness of yellow pigmentation in KK-A(y)/a mice. Mamm. Genome 11, 639–644 ( 2000).

    Article  CAS  Google Scholar 

  45. de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444– 447 (2000).

    Article  Google Scholar 

  46. Van Doren, K., Hanahan, D. & Gluzman, Y. Infection of eucaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA. J. Virol. 50, 606– 614 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gunning, P., Leavitt, J., Muscat, G., Ng, S.Y. & Kedes, L. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA 84, 4831–4835 (1987).

    Article  CAS  Google Scholar 

  48. Duke-Cohan, J.S., Morimoto, C., Rocker, J.A. & Schlossman, S.F. A novel form of dipeptidylpeptidase IV found in human serum. Isolation, characterization, and comparison with T lymphocyte membrane dipeptidylpeptidase IV (CD26). J. Biol. Chem. 270, 14107–14114 (1995).

    Article  CAS  Google Scholar 

  49. Ollmann, M.M. & Barsh, G.S. Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores. J. Biol. Chem. 274, 15837– 15846 (1999).

    Article  CAS  Google Scholar 

  50. Kuramoto, T. et al. Attractin/Mahogany/Zitter plays a critical role in myelination of the central nervous system. Proc. Natl. Acad. Sci. USA (in press).

Download references

Acknowledgements

We thank P. Kim and R. Saxena for technical assistance; C. Hwu, M. Ollmann, K. Willert, B. Wilson and J. Xu for advice about experimental design and data presentation; Y. Chen for construction of transgenic mice; P. Budd and I. Jackson for the Dct promoter construct; and H. Lee for assistance with animal breeding and genotyping. This work was supported by grants to G.S.B. (DK-48506) and to S.J.W. (MH42251) from the National Institutes of Health, and by a American Heart Association Western States fellowship award to T.M.G. G.S.B. is an Associate Investigator of the Howard Hughes Medical Institute. L.H. carried out the protein interaction studies and T.M.G. carried out the genetic interaction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Barsh.

Supplementary information

Web Figure A

Alignment of the complete amino acid alignment of the predicted Atrn proteins encoded by the mouse and Drosophila cDNAs, and by the C. elegans genome sequence. Identities and similarities are shaded in black and gray, respectively, and conserved domains indicated by colored bars. (GIF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Gunn, T., Bouley, D. et al. A biochemical function for attractin in agouti-induced pigmentation and obesity. Nat Genet 27, 40–47 (2001). https://doi.org/10.1038/83741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing