Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • New Technology
  • Published:

Dominant effector genetics in mammalian cells

Abstract

We have expressed libraries of peptides in mammalian cells to select for trans-dominant effects on intracellular signaling systems. As an example—and to reveal pharmacologically relevant points in pathways that lead to Taxol resistance—we selected for peptide motifs that confer resistance to Taxol-induced cell death. Of several peptides selected, one, termed RGP8.5, was linked to upregulation of expression of the gene ABCB1 (also known as MDR1, for multiple drug resistance) in HeLa cells. Our data indicate that trans-dominant effector peptides can point to potential mechanisms by which signaling systems operate. Such tools may be useful in functional genomic analysis of signaling pathways in mammalian disease processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for the peptide library screen.
Figure 2: Peptides conferring Taxol resistance to HeLa cells.
Figure 3: RGP8.5 peptide upregulates ABCB1 in HeLa cells.
Figure 4: ABCB1 expression conferring Taxol resistance to HeLa cells.
Figure 5: ABCB1 mRNA steady-state levels are increased by RGP8.5 peptide.
Figure 6: Association of the RGP8.5 peptide with PSMA7 and PSMA5 proteasome subunits.
Figure 7: Chemical inhibition of the proteasome also induces ABCB1 expression.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Houghten, R.A. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  Google Scholar 

  2. Kundu, B., Khare, S.K. & Rastogi, S.K. Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries. Prog. Drug Res. 53, 89–156 (1999).

    Article  CAS  Google Scholar 

  3. Schaffitzel, C., Hanes, J., Jermutus, L. & Pluckthun, A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries . J. Immunol. Methods 231,119– 135 (1999).

    Article  CAS  Google Scholar 

  4. Cabilly, S. The basic structure of filamentous phage and its use in the display of combinatorial peptide libraries. Mol. Biotechnol. 12, 143–148 (1999).

    Article  CAS  Google Scholar 

  5. Blum, J.H., Dove, S.L., Hochschild, A. & Mekalanos, J.J. Isolation of peptide aptamers that inhibit intracellular processes. Proc. Natl. Acad. Sci. USA 97, 2241– 2246 (2000).

    Article  CAS  Google Scholar 

  6. Norman, T.C. et al. Genetic selection of peptide inhibitors of biological pathways . Science 285, 591–595 (1999).

    Article  CAS  Google Scholar 

  7. Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548 –550 (1996).

    Article  CAS  Google Scholar 

  8. Gudkov, A.V. et al. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad. Sci. USA 91, 3744–3748 (1994).

    Article  CAS  Google Scholar 

  9. Gallagher, W.M., Cairney, M., Schott, B., Roninson, I.B. & Brown, R. Identification of p53 genetic suppressor elements which confer resistance to cisplatin. Oncogene 14, 185–193 (1997).

    Article  CAS  Google Scholar 

  10. Kaye, S.B. Multidrug resistance: clinical relevance in solid tumours and strategies for circumvention. Curr. Opin. Oncol. 10, S15 –19 (1998).

    PubMed  Google Scholar 

  11. Hart, S.M. et al. Flow cytometric assessment of multidrug resistance (MDR) phenotype in acute myeloid leukaemia. Leuk. Lymphoma 11, 239–248 (1993).

    Article  CAS  Google Scholar 

  12. Yamaguchi, M. et al. Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 76, 2351– 2356 (1995).

    Article  CAS  Google Scholar 

  13. Bello-Reuss, E. & Ernest, S. Expression and function of P-glycoprotein in human mesangial cells. Am. J. Physiol. 267, C1351–1358 ( 1994).

    Article  CAS  Google Scholar 

  14. Schinkel, A.H. The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 8, 161–170 (1997).

    Article  CAS  Google Scholar 

  15. Dumontet, C., Duran, G.E., Steger, K.A., Beketic-Oreskovic, L. & Sikic, B.I. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol) . Cancer Res. 56, 1091– 1097 (1996).

    CAS  PubMed  Google Scholar 

  16. Mechetner, E. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 4, 389 –398 (1998).

    CAS  PubMed  Google Scholar 

  17. Volm, M. Multidrug resistance and its reversal. Anticancer Res. 18, 2905–2917 (1998).

    CAS  PubMed  Google Scholar 

  18. Lee, J.S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994).

    CAS  PubMed  Google Scholar 

  19. Leith, C. Multidrug resistance in leukemia. Curr. Opin. Hematol. 5, 287–291 (1998).

    Article  CAS  Google Scholar 

  20. Huang, Y. et al. Co-expression of several molecular mechanisms of multidrug resistance and their significance for paclitaxel cytotoxicity in human AML HL-60 cells . Leukemia 11, 253–257 (1997).

    Article  CAS  Google Scholar 

  21. Groettrup, M. & Schmidtke, G. Selective proteasome inhibitors: modulators of antigen presentation? Drug Discov. Today 4, 63–71 (1999).

    Article  CAS  Google Scholar 

  22. Kania, M.A., Demartino, G.N., Baumeister, W. & Goldberg, A.L. The proteasome subunit, C2, contains an important site for binding of the PA28 (11S) activator. Eur. J. Biochem. 236, 510–516 (1996).

  23. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I κ B α to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  Google Scholar 

  24. Tsurumi, C., Shimizu, Y. & Tanaka, K. Degradation mechanism of cell cycle factors by the proteasome . Nippon Rinsho 54, 861– 869 (1996).

    CAS  PubMed  Google Scholar 

  25. Lee, D.H. & Goldberg, A.L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).

    Article  CAS  Google Scholar 

  26. Doong, S.L. et al. Transactivation of the human MDR1 gene by hepatitis B virus X gene product. J. Hepatol. 29, 872– 878 (1998).

    Article  CAS  Google Scholar 

  27. Huang, J., Kwong, J., Sun, E.C. & Liang, T.J. Proteasome complex as a potential cellular target of hepatitis B virus X protein. J. Virol. 70, 5582–5591 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu, Z. et al. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J. Virol. 73, 7231–7240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao, Y. et al. Inhibition of ubiquitin-proteasome pathway-mediated I κ B α degradation by a naturally occurring antibacterial peptide. J. Clin. Invest. 106, 439–448 (2000).

    Article  CAS  Google Scholar 

  30. Jorgensen, L. & Hendil, K.B. Proteasome subunit ζ, a putative ribonuclease, is also found as a free monomer. Mol. Biol. Rep. 26, 119–123 ( 1999).

    Article  CAS  Google Scholar 

  31. Petit, F. et al. Involvement of proteasomal subunits ζ and ι in RNA degradation. Biochem. J. 326, 93– 98 (1997); erratum: 327, 935 (1997).

    Article  CAS  Google Scholar 

  32. Kim, S.H. et al. Involvement of heat shock factor in regulating transcriptional activation of MDR1 gene in multidrug-resistant cells. Cancer Lett. 115, 9–14 ( 1997).

    Article  CAS  Google Scholar 

  33. Miyazaki, M. et al. Activation of human multidrug resistance-1 gene promoter in response to heat shock stress. Biochem. Biophys. Res. Commun. 187, 677–684 (1992).

    Article  CAS  Google Scholar 

  34. Kawazoe, Y., Nakai, A., Tanabe, M. & Nagata, K. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur. J. Biochem. 255, 356–362 (1998).

    Article  CAS  Google Scholar 

  35. Caponigro, G. et al. Transdominant genetic analysis of a growth control pathway . Proc. Natl. Acad. Sci. USA 95, 7508– 7513 (1998).

    Article  CAS  Google Scholar 

  36. Klimka, A. et al. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETA') is a potent immunotoxin against a Hodgkin-derived cell line. Br. J. Cancer 80, 1214–1222 (1999).

    Article  CAS  Google Scholar 

  37. Wong, D.W. & Robertson, G.H. High-affinity peptide ligands for pancreatic α-amylase by phage display. Ann. NY Acad. Sci. 864, 555–557 ( 1998).

    Article  CAS  Google Scholar 

  38. Wrighton, N.C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin . Science 273, 458–464 (1996).

    Article  CAS  Google Scholar 

  39. Lorens J.B. et al. Retroviral delivery of peptide modulators of cellular functions . Mol. Ther. 1, 438–447 (2000).

    Article  CAS  Google Scholar 

  40. Gururaja, T., Narasimhamurthy, S., Payan, D.G. & Anderson, D.C. A novel artificial loop scaffold for the non-covalent constraint of peptides . Chem. Biol. 7, 515–527 (2000).

    Article  CAS  Google Scholar 

  41. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392– 8396 (1993).

    Article  CAS  Google Scholar 

  42. Bodenmuller, H., Schilling, E., Zachmann, B. & Schaller, H. The neuropeptide head activator loses its biological activity by dimerization . EMBO J. 5, 1825–1829 (1986).

    Article  CAS  Google Scholar 

  43. Ausubel, F.M. et al. Transfection of DNA into eukaryotic cells. in Current Protocols in Molecular Biology vol. 1, 9.1.1 –9.1.3 (John Wiley & Sons, New York, 1994).

    Google Scholar 

  44. Hitoshi, Y. et al. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 8, 461– 471 (1998).

    Article  CAS  Google Scholar 

  45. Castro, B., Dormoy, J.R., Evin, G. & Selve, C. Peptide coupling reagents. N-[Oxytris(dimethylamino)phosphonium]benzotriazole hexafluorophosphate . Tetrahedron Lett. 14, 1219– 1222 (1975).

    Article  Google Scholar 

  46. Gururaja, T.L. & Levine, M.J. Solid-phase synthesis and characterization of human salivary statherin: a tyrosine-rich phosphoprotein inhibitor of calcium phosphate precipitation. Pept. Res. 9, 283–289 (1996).

    CAS  PubMed  Google Scholar 

  47. Chen, G. et al. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. J. Biol. Chem. 272, 5974–5982 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Armstrong and B. Fox for construction of the peptide library and retroviral vectors; C. Liao for critical reading of the manuscript; and R. Smith for suggestions on editing and clarity. G.P.N. is a recipient of the Burroughs Wellcome New Investigator Award in Pharmacology, is a Scholar of the Leukemia Society of America and is supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Xu or Garry P. Nolan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Leo, C., Jang, Y. et al. Dominant effector genetics in mammalian cells. Nat Genet 27, 23–29 (2001). https://doi.org/10.1038/83717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83717

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing