Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination

Abstract

The Escherichia coli gene recQ was identified as a RecF recombination pathway gene1. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype2,3. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability4,5. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements6,7. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of sgs1, top3 and msh2 mutations on recombination.

Similar content being viewed by others

References

  1. Nakayama, H. et al. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195, 475–480 (1984).

    Article  Google Scholar 

  2. Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett, R.J., Sharp, J.A. & Wang, J.C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273, 9644–9650 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. German, J. & Ellis, N.A. The Genetic Basis of Human Cancer 301–315 (McGraw-Hill, New York, 1998).

    Google Scholar 

  5. Moser, M.J., Shima, J. & Monnat, R.J. Jr., WRN mutations in Werner syndrome. Hum. Mut. 13, 271–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, C., Umezu, K. & Kolodner, R.D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, C. & Kolodner, R.D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ng, S., Liu, Y., Hasselblatt, K.T., Mok, S.C. & Berkowitz, R.S. A new human topoisomerase III that interacts with SGS1 protein. Nucleic Acids Res. 27, 993–1000 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Datta, A., Adjiri, A., New, L., Crouse, G.F. & Jinks-Robertson, S. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1085–1093 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matic, I., Rayssiguier, C. & Radman, M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80, 507–515 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Yamagata, K. et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95, 8733–8738 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholson, A., Hendrix, M., Jinks-Robertson, S. & Crouse, G.F. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics 154, 133–146 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harmon, F.G. & Kowalczykowski, S.C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81–96 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Davey, S. et al. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol. 18, 2721–2728 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan, H., Chen, C.Y., Kobayashi, R. & Newport, J. Replication focus-forming activity 1 and the Werner syndrome gene product. Nature Genet. 19, 375–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Blander, G. et al. Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem. 274, 29463–29469 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Schulz, V.P. & Zakian, V.A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, C.-E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Goto, M., Miller, R.W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomarkers Prev. 5, 239–246 (1996).

    CAS  PubMed  Google Scholar 

  24. Shiraishi, Y., Kubonishi, I. & Sandberg, A.A. Establishment of B-lymphoid cell lines retaining cytogenetic characteristics of Bloom syndrome. Cancer Genet. Cytogenet. 9, 129–138 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Salk, D., Au, K., Hoehn, H. & Martin, G.M. Cytogenetic aspects of Werner syndrome. Adv. Exp. Med. Biol. 190, 541–546 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Fukuchi, K.-i. et al. Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum. Genet. 84, 249–252 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Monnat, R.J.J., Hackmann, A.F.M. & Chiaverotti, T.A. Nucleotide sequence analysis of human hypoxanthine phosphoribosyltransferase (HPRT) gene deletions. Genomics 13, 777–787 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Langlois, R.G., Bigbee, W.L., Jensen, R.H. & German, J. Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome. Proc. Natl. Acd. Sci. USA 86, 670–674 (1989).

    Article  CAS  Google Scholar 

  29. Hanada, K. et al. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 3860–3865 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calin, G., Herlea, V., Barbanti-Brodano, G. & Negrini, M. The coding region of the Bloom syndrome BLM gene and of the CBL proto-oncogene is mutated in genetically unstable sporadic gastrointestinal tumors. Cancer Res. 58, 3777–3781 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Jinks-Robertson for the plasmids used in constructing the strains required for the recombination assays; A. Shoemaker, T. Nakagawa and J. Schmeits for discussions; J. Weger and J. Green for DNA sequencing; and R. Fishel for comments on the manuscript. This work was supported by National Institutes of Health grants GM26017 and GM50006 to R.D.K., a fellowship from the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation to K.M. and a fellowship from the American Cancer Society to A.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myung, K., Datta, A., Chen, C. et al. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27, 113–116 (2001). https://doi.org/10.1038/83673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing