Abstract
Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pratt, D.S. & Kaplan, M.M. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N. Engl. J. Med. 342, 1266–1271 (2000).
Söderberg, C. et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 51, 595–602 (2010).
Xu, K. et al. Diagnostic value of serum γ-glutamyl transferase isoenzyme for hepatocellular carcinoma: a 10-year study. Am. J. Gastroenterol. 87, 991–995 (1992).
Sattar, N. et al. Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 53, 2855–2860 (2004).
Ioannou, G.N., Weiss, N.S., Boyko, E.J., Mozaffarian, D. & Lee, S.P. Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States. Hepatology 43, 1145–1151 (2006).
Watkins, P.B. Idiosyncratic liver injury: challenges and approaches. Toxicol. Pathol. 33, 1–5 (2005).
Rahmioglu, N. et al. Epidemiology and genetic epidemiology of the liver function test proteins. PLoS ONE 4, e4435 (2009).
Nugent, C. & Younossi, Z.M. Evaluation and management of obesity-related nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 4, 432–441 (2007).
Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).
Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).
Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 42, 210–215 (2010).
The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
Paulusma, C.C. et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44, 195–204 (2006).
Iwamori, M. & Domino, S.E. Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1,2)fucosyltransferase genes. Biochem. J. 380, 75–81 (2004).
LeBoeuf, R.C. et al. Mouse glycosylphosphatidylinositol-specific phospholipase D (Gpld1) characterization. Mamm. Genome 9, 710–714 (1998).
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).
Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).
Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).
Elliott, P. et al. Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease. J. Am. Med. Assoc. 302, 37–48 (2009).
Bull, L.N. et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18, 219–224 (1998).
Shin, D.M., Zhao, X.S., Zeng, W., Mozhayeva, M. & Muallem, S. The mammalian Sec6/8 complex interacts with Ca(2+) signaling complexes and regulates their activity. J. Cell Biol. 150, 1101–1112 (2000).
The 1000 Genomes Projects Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).
Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).
Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
Noé, J., Stieger, B. & Meier, P.J. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123, 1659–1666 (2002).
van Mil, S.W. et al. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127, 379–384 (2004).
Knisely, A.S. et al. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44, 478–486 (2006).
Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).
Chambers, J.C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).
Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).
Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).
Illig, T. et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141 (2010).
Stolk, R.P. et al. Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur. J. Epidemiol. 23, 67–74 (2008).
Speliotes, E.K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7, e1001324 (2011).
Klomp, L.W. et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40, 27–38 (2004).
Petit, J.M. et al. Specifically PNPLA3-mediated accumulation of liver fat in obese patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 95, E430–E436 (2010).
Dunn, J.S. et al. Examination of PPP1R3B as a candidate gene for the type 2 diabetes and MODY loci on chromosome 8p23. Ann. Hum. Genet. 70, 587–593 (2006).
He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).
Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).
Bolt, H.M. & Thier, R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab. 7, 613–628 (2006).
Zhang, H., Forman, H.J. & Choi, J. γ-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 401, 468–483 (2005).
Wolpin, B.M. et al. Variant ABO blood group alleles, secretor status, and risk of pancreatic cancer: results from the pancreatic cancer cohort consortium. Cancer Epidemiol. Biomarkers Prev. 19, 3140–3149 (2010).
Edgren, G. et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am. J. Epidemiol. 172, 1280–1285 (2010).
Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).
Hazra, A. et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40, 1160–1162 (2008).
Heath, A.C. et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol. Med. 27, 1381–1396 (1997).
Wallace, C. et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am. J. Hum. Genet. 82, 139–149 (2008).
Firmann, M. et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disord. 8, 6 (2008).
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
Watkinson, C., van Sluijs, E.M., Sutton, S., Marteau, T. & Griffin, S.J. Randomised controlled trial of the effects of physical activity feedback on awareness and behaviour in UK adults: the FAB study protocol. BMC Public Health [ISRCTN92551397] 10, 144 (2010).
Kaprio, J. Twin studies in Finland 2006. Twin Res. Hum. Genet. 9, 772–777 (2006).
Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).
Löwel, H. et al. The MONICA Augsburg surveys–basis for prospective cohort studies. Gesundheitswesen 67 (suppl 1), S13–S18 (2005).
Lamers, F et al. Comorbidity patterns of anxiety and depressive disorders in a large cohort study: the Netherlands Study of Depression and Anxiety (NESDA). J. Clin. Psychiatry 72, 341–348 (2011).
Boomsma, D.I. et al. Netherlands Twin Register: from twins to twin families. Twin Res. Hum. Genet. 9, 849–857 (2006).
Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).
Hofman, A. et al. The Rotterdam Study: 2010 objectives and design update. Eur. J. Epidemiol. 24, 553–572 (2009).
Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).
Haring, R. et al. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes 58, 2027–2031 (2009).
Spector, T.D. & MacGregor, A.J. The St. Thomas' UK Adult Twin Registry. Twin Res. 5, 440–443 (2002).
Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Bennett-Lovsey, R.M., Herbert, A.D., Sternberg, M.J. & Kelley, L.A. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70, 611–625 (2008).
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).
Jimenez-Marin, A., Collado-Romero, M., Ramirez-Boo, M., Arce, C. & Garrido, J.J. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc. 3 (suppl. 4), S6 (2009).
Schumann, G. et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc. Natl. Acad. Sci. USA 108, 7119–7124 (2011).
Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).
Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).
Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
Inouye, M. et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol. Syst. Biol. 6, 441 (2010).
Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 1781–1785 (2009).
Würtz, P. et al. Characterization of systemic metabolic phenotypes associated with subclinical atherosclerosis. Mol. Biosyst. 7, 385–393 (2011).
Acknowledgements
We thank the many colleagues who contributed to collection and phenotypic characterization of the clinical samples, as well as genotyping and analysis of data. We also thank the research participants who took part in these studies. Major support for the work came from European Commission (FP5, FP6 and FP7); European Science Foundation; European Science Council; US NIH; US National Institute of Mental Health; US NIDDK; Genetic Association Information Network; US National Institute on Aging; US National Human Genome Research Institute; US NHLBI; UK NIHR; NIHR Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust; NIHR Comprehensive Biomedical Research Centre Guy's and St. Thomas' NHS Trust; UK Biotechnology and Biological Sciences Research Council; UK MRC; British Heart Foundation; Wellcome Trust; Swiss National Science Foundation; Academy of Finland; Finnish Cardiovascular Research Foundation; Swedish Research Council; Swedish Heart-Lung Foundation; Helmholtz Zentrum München; German Research Center for Environmental Health; German Federal Ministry of Education and Research; German National Genome Research Network; Netherlands Organization for Scientific Research; Dutch Ministries of Economic Affairs, of Education, Culture and Science, for Health, Welfare and Sports; Netherlands Organization for Health Research and Development; Economic Structure Enhancing Fund of the Dutch government; Dutch Kidney Foundation; Dutch Diabetes Research Foundation; Dutch Brain Foundation; Dutch Research Institute for Diseases in the Elderly; Netherlands Genomics Initiative; Canadian Institutes for Health Research; Ontario Research Fund; The Barts and the London Charity; University Medical Center Groningen; University of Groningen; University of Oulu, Biocenter Oulu; University Hospital Oulu; Biocentrum Helsinki; Erasmus Medical Center and Erasmus University, Rotterdam; Karolinska Institutet; Stockholm County Council; Municipality of Rotterdam; Federal State of Mecklenburg-West Pomerania; AstraZeneca; GlaxoSmithKline; Siemens Healthcare; Novo Nordisk Foundation; Yrjö Jahnsson Foundation; Biomedicum Helsinki Foundation; Gyllenberg Foundation; Knut and Alice Wallenberg Foundation; Torsten and Ragnar Söderberg Foundation; Robert Dawson Evans Endowment, Boston University School of Medicine; Instrumentarium Science Foundation; Jenny and Antti Wihuri Foundation and the Canadian Primary Biliary Cirrhosis Society. A full list of acknowledgments is provided in the Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
Study organization and manuscript preparation was done by J.C.C., W.Z., J. Sehmi, X.L., M.N.W., P.V.d.H., H.H., S.S., M.K., M.A.-K., K.S., P.V., H.V., E.E.S., J. Scott, M.-R.J., P.E. and J.S.K. All authors reviewed and had the opportunity to comment on the manuscript. Data collection and analysis in the participating GWASs were done by G.W.M., J.B.W. and N.G.M. (Australian Twin Cohort); C.W., M.C., M.J.B. and P.B.M. (BRIGHT); D.M.W., G. Waeber, P.M.V., P.V., V.M. and X.Y. (CoLaus); D.F.G., G.I.E., G.T., H.H., I.O., K.S. and U.T. (deCODE); J.L., N.G.F., N.J.W. and R.J.F.L. (Fenland); K.H.P. (Finnish Twin Cohort); C.J.O., C.S.F., J.P.L., L.D.A., N.L.H.-C., R.S.V., T.J.L. and W.G. (Framingham Heart Study); A.D., B.K., C.G., C.M. and H.-E.W. (KORA); B.H.R.W., I.M.L., I.P.K., M.M.V.d.K., P.V.d.H. and R.P.S. (LIFELINES); D.D., G.D., H.C.T., I.P., J.C.C., J. Scott, J. Sehmi, J.S.K., M.I.M., P.E., P.F., S.S.-C., W.Z., X.L. and Y.L. (LOLIPOP); B.P.P., B.W.P., B.Z.A., H.S., J.H.S. and V.L. (NESDA); D.I.B., E.J.C.d.G., G. Willemsen, J.-J.H. (Netherlands Twins Register); A.-L.H., A.P., A.R., E.H., M.-R.J. and P.F.O. (Northern Finland Birth Cohort 1966); H. Watkins, J.F.P., M.F. and U.S. (PROCARDIS); A.G.U., A.H., C.M.v.D., H.L.A.J., J.C.M.W., J.N.L.S. and M.K. (Rotterdam Study 1); D.S., F.C., G.R.A., M.U., S.L. and S.S. (SardiNIA); G.H., H.V., H. Wallaschofski, J.P.K., M.M.L., N.F., R.P. and S.E.B. (SHIP); K.R.A., N.R. and T.D.S. (TwinsUK). Biologic associations of loci and bioinformatics were carried out by G.D., W.T., K. Matsuda, V.K., Y.N. and by G.S., L.J.C., P.C. (AlcGen Consortium), C.X., G.M.H., K.A.S. (Canadian Primary Biliary Cirrhosis Consortium), K. Musunuru, T.M.T. (Global Lipids Consortium), E.K.S., I.B.B., L.M.Y.A., T.B.H. (GOLD consortium) and G.E. and T.J. (ICBP-GWAS). Gene expression analyses were done by E.E.S., A.L.D., H.H., G.T., L.L., M.F.M., M.L., S.H. and W.O.C. Metabonomic analyses were done by A.J.K., M.A.-K., M.J.S., P.S., P.W. and T.T. Structural biology was done by M.J.E.S. and M.N.W.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
A full list of members is given in Supplementary Note.
Supplementary information
Supplementary Text and Figures
Supplementary Tables 1–20 and Supplementary Figures 1–6 and Supplementary Note. (PDF 5946 kb)
Rights and permissions
About this article
Cite this article
Chambers, J., Zhang, W., Sehmi, J. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43, 1131–1138 (2011). https://doi.org/10.1038/ng.970
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.970