Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster

Abstract

Many animal species use a chromosome-based mechanism of sex determination, which has led to the coordinate evolution of dosage-compensation systems. Dosage compensation not only corrects the imbalance in the number of X chromosomes between the sexes but also is hypothesized to correct dosage imbalance within cells that is due to monoallelic X-linked expression and biallelic autosomal expression, by upregulating X-linked genes twofold (termed 'Ohno's hypothesis'). Although this hypothesis is well supported by expression analyses of individual X-linked genes and by microarray-based transcriptome analyses, it was challenged by a recent study using RNA sequencing and proteomics. We obtained new, independent RNA-seq data, measured RNA polymerase distribution and reanalyzed published expression data in mammals, C. elegans and Drosophila. Our analyses, which take into account the skewed gene content of the X chromosome, support the hypothesis of upregulation of expressed X-linked genes to balance expression of the genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of gene expression are similar between the X chromosome and autosomes in human, except for reproduction-related X-linked genes not expressed in somatic tissues.
Figure 2: Distributions of gene expression are similar between the X chromosome and autosomes in mouse tissues.
Figure 3: Expressed X-linked genes are enriched in RNA PolII-S5p.
Figure 4: X:A expression ratios in adult C. elegans result from the presence of germ cells in which the X chromosomes are silenced.
Figure 5: X chromosome dosage compensation in early mitotic cells in the Drosophila germline.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Birchler, J.A., Riddle, N.C., Auger, D.L. & Veitia, R.A. Dosage balance in gene regulation: biological implications. Trends Genet. 21, 219–226 (2005).

    Article  CAS  Google Scholar 

  2. Veitia, R.A., Bottani, S. & Birchler, J.A. Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet. 24, 390–397 (2008).

    Article  CAS  Google Scholar 

  3. Deng, X. & Disteche, C.M. Genomic responses to abnormal gene dosage: the X chromosome improved on a common strategy. PLoS Biol. 8, e1000318 (2010).

    Article  Google Scholar 

  4. Gelbart, M.E. & Kuroda, M.I. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136, 1399–1410 (2009).

    Article  CAS  Google Scholar 

  5. Straub, T. & Becker, P.B. Dosage compensation: the beginning and end of generalization. Nat. Rev. Genet. 8, 47–57 (2007).

    Article  CAS  Google Scholar 

  6. Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190, 372–373 (1961).

    Article  CAS  Google Scholar 

  7. Meyer, B.J. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20, 179–189 (2010).

    Article  CAS  Google Scholar 

  8. Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 (2006).

    Article  Google Scholar 

  9. Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53 (2006).

    Article  CAS  Google Scholar 

  10. Adler, D.A. et al. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc. Natl. Acad. Sci. USA 94, 9244–9248 (1997).

    Article  CAS  Google Scholar 

  11. Xiong, Y. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42, 1043–1047 (2010).

    Article  CAS  Google Scholar 

  12. Vicoso, B. & Charlesworth, B. Evolution on the X chromosome: unusual patterns and processes. Nat. Rev. Genet. 7, 645–653 (2006).

    Article  CAS  Google Scholar 

  13. Kelly, W.G. et al. X-chromosome silencing in the germline of C. elegans. Development 129, 479–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hense, W., Baines, J.F. & Parsch, J. X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol. 5, e273 (2007).

    Article  Google Scholar 

  15. Turner, J.M. Meiotic sex chromosome inactivation. Development 134, 1823–1831 (2007).

    Article  CAS  Google Scholar 

  16. Khil, P.P., Smirnova, N.A., Romanienko, P.J. & Camerini-Otero, R.D. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Genet. 36, 642–646 (2004).

    Article  CAS  Google Scholar 

  17. Ross, M.T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  Google Scholar 

  18. Mueller, J.L. et al. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40, 794–799 (2008).

    Article  CAS  Google Scholar 

  19. Pepke, S., Wold, B. & Mortazavi, A. Computation for ChIP-seq and RNA-seq studies. Nat. Methods 6, S22–S32 (2009).

    Article  CAS  Google Scholar 

  20. Cheung, V.G. et al. Polymorphic cis- and trans-regulation of human gene expression. PLoS Biol. 8, e1000480 (2010).

    Article  Google Scholar 

  21. Saifi, G.M. & Chandra, H.S. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. Biol. Sci. 266, 203–209 (1999).

    Article  CAS  Google Scholar 

  22. Hofmann, O. et al. Genome-wide analysis of cancer/testis gene expression. Proc. Natl. Acad. Sci. USA 105, 20422–20427 (2008).

    Article  CAS  Google Scholar 

  23. Skuse, D.H. X-linked genes and mental functioning. Hum. Mol. Genet. 14 Spec No 1, R27–R32 (2005).

    Article  Google Scholar 

  24. Ropers, H.H. X-linked mental retardation: many genes for a complex disorder. Curr. Opin. Genet. Dev. 16, 260–269 (2006).

    Article  CAS  Google Scholar 

  25. Stevenson, R.E. & Schwartz, C.E. X-linked intellectual disability: unique vulnerability of the male genome. Dev. Disabil. Res. Rev. 15, 361–368 (2009).

    Article  Google Scholar 

  26. Wang, P.J., McCarrey, J.R., Yang, F. & Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27, 422–426 (2001).

    Article  Google Scholar 

  27. Lin, H. et al. Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol. 5, e326 (2007).

    Article  Google Scholar 

  28. Zvetkova, I. et al. Global hypomethylation of the genome in XX embryonic stem cells. Nat. Genet. 37, 1274–1279 (2005).

    Article  CAS  Google Scholar 

  29. Mizuno, H., Okamoto, I. & Takagi, N. Developmental abnormalities in mouse embryos tetrasomic for chromosome 11: apparent similarity to embryos functionally disomic for the x chromosome. Genes Genet. Syst. 77, 269–276 (2002).

    Article  Google Scholar 

  30. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  31. Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  Google Scholar 

  32. Byerly, L., Cassada, R.C. & Russell, R.L. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev. Biol. 51, 23–33 (1976).

    Article  CAS  Google Scholar 

  33. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  34. Lewis, J.A. et al. Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J. Neurosci. 7, 3059–3071 (1987).

    Article  CAS  Google Scholar 

  35. Wood, W.B. Determination of pattern and fate in early embryos of Caenorhabditis elegans. Dev. Biol. (N Y 1985) 5, 57–78 (1988).

    CAS  Google Scholar 

  36. Crittenden, S.L., Leonhard, K.A., Byrd, D.T. & Kimble, J. Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol. Biol. Cell 17, 3051–3061 (2006).

    Article  CAS  Google Scholar 

  37. Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).

    Article  CAS  Google Scholar 

  38. Parisi, M. et al. Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299, 697–700 (2003).

    Article  CAS  Google Scholar 

  39. Gan, Q. et al. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res. 20, 763–783 (2010).

    Article  CAS  Google Scholar 

  40. Rice, W.R. Sexually antagonistic genes: experimental evidence. Science 256, 1436–1439 (1992).

    Article  CAS  Google Scholar 

  41. Zechner, U. et al. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet. 17, 697–701 (2001).

    Article  CAS  Google Scholar 

  42. Hamada, F.N., Park, P.J., Gordadze, P.R. & Kuroda, M.I. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev. 19, 2289–2294 (2005).

    Article  CAS  Google Scholar 

  43. Gilfillan, G.D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20, 858–870 (2006).

    Article  CAS  Google Scholar 

  44. Zhang, Y. et al. Expression in aneuploid Drosophila S2 cells. PLoS Biol. 8, e1000320 (2010).

    Article  Google Scholar 

  45. Alekseyenko, A.A., Larschan, E., Lai, W.R., Park, P.J. & Kuroda, M.I. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20, 848–857 (2006).

    Article  CAS  Google Scholar 

  46. Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471, 115–118 (2011).

    Article  CAS  Google Scholar 

  47. Ercan, S. et al. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat. Genet. 39, 403–408 (2007).

    Article  CAS  Google Scholar 

  48. Carrel, L. & Willard, H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    Article  CAS  Google Scholar 

  49. Berletch, J.B., Yang, F. & Disteche, C.M. Escape from X inactivation in mice and humans. Genome Biol. 11, 213 (2010).

    Article  Google Scholar 

  50. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  Google Scholar 

  51. Yang, F., Babak, T., Shendure, J. & Disteche, C.M. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 20, 614–622 (2010).

    Article  CAS  Google Scholar 

  52. Mito, Y., Henikoff, J.G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37, 1090–1097 (2005).

    Article  CAS  Google Scholar 

  53. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  54. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  55. Hosseini, P., Tremblay, A., Matthews, B.F. & Alkharouf, N.W. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets. BMC Res. Notes 3, 183 (2010).

    Article  Google Scholar 

  56. Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648 (2010).

    Article  CAS  Google Scholar 

  57. Hillier, L.W. et al. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res. 19, 657–666 (2009).

    Article  CAS  Google Scholar 

  58. Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  Google Scholar 

  59. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  60. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  61. Davis, T.L. & Meyer, B.J. SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. Development 124, 1019–1031 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Nelson and C. Ware (University of Washington) for expert assistance with ES cell culture and N. Brockdorff (Oxford University) for the female ES cell line PGK12.1. We thank R. Beyer (University of Washington) and X. Deng (University of Wisconsin–Madison) for help with statistical analyses and F. Yang (University of Washington) for helpful discussions. We thank I. Khrebtukova (Illumina) for RNA-seq data on human tissues. This work was supported by grants from the US National Institutes of Health GM079537 (C.M.D.), modENCODE grants HG004270 (J.D.L.), HG004263 (R.H.W.) and AG039173 (J.B.H.), ENCODE Transcriptome Project grant HG004557 (T.R.G.) and by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (B.O.), the William H. Gates III Endowed Chair of Biomedical Sciences (R.H.W.) and a fellowship from the Achievement Rewards for College Scientists (J.B.H.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.D., C.M.D., J.D.L. and B.O. conceived the project and wrote the manuscript. X.D., J.B.H., D.K.N., F.S., C.A.D., T.R.G., J.S., C.M.D. and B.O. analyzed the mammalian data; R.H.W., L.W.H., J.D.L., V.J.R. and S.E. analyzed the C. elegans data; B.O. and D.S. analyzed the Drosophila data; X.D., J.B.H. and J.S. performed or analyzed the RNA-seq and ChIP-seq data from mouse ES cells.

Corresponding authors

Correspondence to Brian Oliver, Jason D Lieb or Christine M Disteche.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs 1–5 and Supplementary Table 1 (PDF 6343 kb)

Supplementary Table 2

Comparisons of X-linked and autosomal gene expression by RNA-seq in human and mouse (XLS 33 kb)

Supplementary Table 3

Expression of testis-expressed X-linked genes is low in human somatic tissues. (XLS 33 kb)

Supplementary Table 4

Expression of reproduction-related X-linked genes in mouse somatic tissues. (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Hiatt, J., Nguyen, D. et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat Genet 43, 1179–1185 (2011). https://doi.org/10.1038/ng.948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing