Abstract

A20 (TNFAIP3) is a protein that is involved in the negative feedback regulation of NF-κB signaling in response to specific proinflammatory stimuli in different cell types and has been suggested as a susceptibility gene for rheumatoid arthritis. To define the contribution of A20 to rheumatoid arthritis pathology, we generated myeloid-specific A20-deficient mice and show that specific ablation of Tnfaip3 in myeloid cells results in spontaneous development of a severe destructive polyarthritis with many features of rheumatoid arthritis. Myeloid-A20–deficient mice have high levels of inflammatory cytokines in their serum, consistent with a sustained NF-κB activation and higher TNF production by macrophages. Destructive polyarthritis in myeloid A20 knockout mice was TLR4-MyD88 and IL-6 dependent but was TNF independent. Myeloid A20 deficiency also promoted osteoclastogenesis in mice. Together, these observations indicate a critical and cell-specific function for A20 in the etiology of rheumatoid arthritis, supporting the idea of developing A20 modulatory drugs as cell-targeted therapies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2009).

  2. 2.

    et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

  3. 3.

    et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

  4. 4.

    et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

  5. 5.

    et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J. Immunol. 182, 7718–7728 (2009).

  6. 6.

    et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

  7. 7.

    , & The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

  8. 8.

    et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J. Exp. Med. 207, 1513–1523 (2010).

  9. 9.

    , , , & Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

  10. 10.

    et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

  11. 11.

    & Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

  12. 12.

    et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802 (1993).

  13. 13.

    & The role of Toll-like receptors in rheumatoid arthritis. Curr. Rheumatol. Rep. 11, 357–364 (2009).

  14. 14.

    , & Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307 (2010).

  15. 15.

    et al. Targeted disruption of the MyD88 gene results in loss of IL-1– and IL-18–mediated function. Immunity 9, 143–150 (1998).

  16. 16.

    et al. Role of enteric bacteria in the pathogenesis of rheumatoid arthritis: evidence for antibodies to enterobacterial common antigens in rheumatoid sera and synovial fluids. Ann. Rheum. Dis. 55, 363–369 (1996).

  17. 17.

    , , & Oral administration of lipopolysaccharide exacerbates collagen-induced arthritis in mice. J. Immunol. 163, 3417–3422 (1999).

  18. 18.

    et al. Oral antibiotics as a novel therapy for arthritis: evidence for a beneficial effect of intestinal Escherichia coli. Arthritis Rheum. 43, 2583–2589 (2000).

  19. 19.

    , , , & Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

  20. 20.

    & Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

  21. 21.

    et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

  22. 22.

    et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

  23. 23.

    , , & RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

  24. 24.

    et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566–1571 (2000).

  25. 25.

    & Tumor necrosis factor-α antagonists for the treatment of rheumatic diseases. Curr. Opin. Rheumatol. 14, 204–211 (2002).

  26. 26.

    et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

  27. 27.

    et al. Rheumatoid arthritis association at 6q23. Nat. Genet. 39, 1431–1433 (2007).

  28. 28.

    et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

  29. 29.

    et al. Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G850–G859 (2009).

  30. 30.

    et al. Anti-IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-α challenge in mice. J. Immunol. 145, 4185–4191 (1990).

  31. 31.

    et al. Freund's complete adjuvant induces arthritis in mice lacking a functional interferon-γ receptor by triggering tumor necrosis factor α-driven osteoclastogenesis. Arthritis Rheum. 56, 2595–2607 (2007).

Download references

Acknowledgements

We are grateful to I. Förster for donating the LysM-Cre transgenic mice. We thank H. Heremans for providing us with the IL-6 and control antibodies. We thank T. Hochepied for transgenic services, P. Bogaert and E. Parthoens for technical help, A. Bredan for critical reading of the manuscript and D. Huyghebaert and L. Bellen for animal care. L.V. and J.M. are PhD fellows with the Instituut voor Innovatie door Wetenschap en Technologie (IWT), and J.M. is also supported by an Emmanuel van der Schueren award. C.M.G., L.G. and P.J. are PhD fellows with the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO). G.v.L. is supported, as a postdoctoral researcher, by the FWO, by an FWO Odysseus Grant and by the Charcot Foundation. M.K. is supported by an Intra European fellowship from the Marie Curie Actions. M.P. is supported by an FP7 EC program grant Masterswitch (EC-223404). B.N.L. is supported by an FWO Odysseus grant, a European Research Council Starting grant and the Group-ID Multidisciplinary Research Partnership grant of Ghent University. Work in the lab of R.B. and G.v.L. is further supported by research grants from the Interuniversity Attraction Poles program (IAP6/18), the FWO, the Belgian Foundation against Cancer, the Strategic Basis Research program of the IWT, the Centrum voor Gezwelziekten, the Hercules Foundation, and the Concerted Research Actions (GOA) and Group-ID MRP of Ghent University.

Author information

Author notes

    • Mourad Matmati
    •  & Peggy Jacques

    These authors contributed equally to this work.

    • Dirk Elewaut
    • , Rudi Beyaert
    •  & Geert van Loo

    These authors jointly directed this work.

Affiliations

  1. Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.

    • Mourad Matmati
    • , Jonathan Maelfait
    • , Mirjam Kool
    • , Mozes Sze
    • , Conor Mc Guire
    • , Lars Vereecke
    • , Rudi Beyaert
    •  & Geert van Loo
  2. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.

    • Mourad Matmati
    • , Jonathan Maelfait
    • , Mozes Sze
    • , Conor Mc Guire
    • , Lars Vereecke
    • , Rudi Beyaert
    •  & Geert van Loo
  3. Department of Rheumatology, Laboratory for Molecular Immunology and Inflammation, Ghent University Hospital, Ghent, Belgium.

    • Peggy Jacques
    • , Eveline Verheugen
    • , Els Louagie
    •  & Dirk Elewaut
  4. Department of Respiratory Diseases, Laboratory of Immunoregulation and Mucosal Immunology, Ghent University Hospital, Ghent, Belgium.

    • Mirjam Kool
    •  & Bart N Lambrecht
  5. Rega Institute, Leuven University, Leuven, Belgium.

    • Lies Geboes
    •  & Patrick Matthys
  6. Max Planck Institute of Biochemistry, Martinsried, Germany.

    • Yuanyuan Chu
    •  & Marc Schmidt-Supprian
  7. Bioceros, Utrecht, The Netherlands.

    • Louis Boon
  8. Medical Image and Signal Processing, Ghent University and Institute for Broadband Technology, Ghent, Belgium.

    • Steven Staelens
  9. Molecular Imaging Center Antwerp, Antwerp University, Antwerp, Belgium.

    • Steven Staelens
  10. Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

    • Manolis Pasparakis

Authors

  1. Search for Mourad Matmati in:

  2. Search for Peggy Jacques in:

  3. Search for Jonathan Maelfait in:

  4. Search for Eveline Verheugen in:

  5. Search for Mirjam Kool in:

  6. Search for Mozes Sze in:

  7. Search for Lies Geboes in:

  8. Search for Els Louagie in:

  9. Search for Conor Mc Guire in:

  10. Search for Lars Vereecke in:

  11. Search for Yuanyuan Chu in:

  12. Search for Louis Boon in:

  13. Search for Steven Staelens in:

  14. Search for Patrick Matthys in:

  15. Search for Bart N Lambrecht in:

  16. Search for Marc Schmidt-Supprian in:

  17. Search for Manolis Pasparakis in:

  18. Search for Dirk Elewaut in:

  19. Search for Rudi Beyaert in:

  20. Search for Geert van Loo in:

Contributions

M.M., P.J., J.M., E.V., M.K., M.S., L.G., E.L., C.M.G., L.V., S.S. and G.v.L. performed the experiments. M.M., P.J., C.M.G., S.S., P.M., B.N.L., M.P., D.E., R.B. and G.v.L. analyzed the data. Y.C., L.B., P.M., M.S.-S. and M.P. provided materials. D.E., R.B. and G.v.L. provided ideas and coordinated the project. R.B. and G.v.L. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Rudi Beyaert or Geert van Loo.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Table 1 and Supplementary Figures 1–8.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.874

Further reading