Article | Published:

General properties of transcriptional time series in Escherichia coli

Nature Genetics volume 43, pages 554560 (2011) | Download Citation

Abstract

Gene activity is described by the time series of discrete, stochastic mRNA production events. This transcriptional time series shows intermittent, bursty behavior. One consequence of this temporal intricacy is that gene expression can be tuned by varying different features of the time series. Here we quantify copy-number statistics of mRNA from 20 Escherichia coli promoters using single-molecule fluorescence in situ hybridization in order to characterize the general properties of these transcriptional time series. We find that the degree of burstiness is correlated with gene expression level but is largely independent of other parameters of gene regulation. The observed behavior can be explained by the underlying variation in the duration of bursting events. Using Shannon's mutual information function, we estimate the mutual information transmitted between an outside stimulus, such as the extracellular concentration of inducer molecules, and intracellular levels of mRNA. This suggests that the outside stimulus transmits information reflected in the properties of transcriptional time series.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Eukaryotic transcription: what does it mean for a gene to be 'on'? Curr. Biol. 16, R371–R373 (2006).

  2. 2.

    , , & Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

  3. 3.

    & Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

  4. 4.

    & Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr. Opin. Genet. Dev. 20, 478–484 (2010).

  5. 5.

    , , & Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

  6. 6.

    et al. Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr. Biol. 19, 2037–2042 (2009).

  7. 7.

    , , & Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7, 631–633 (2010).

  8. 8.

    , , , & Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

  9. 9.

    & Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48, 222–234 (1995).

  10. 10.

    & Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. USA 105, 17256–17261 (2008).

  11. 11.

    , & Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

  12. 12.

    & Transcript counting in single cells reveals dynamics of rDNA transcription. Mol. Syst. Biol. 6, 358 (2010).

  13. 13.

    , , & The generation of promoter-mediated transcriptional noise in bacteria. PLOS Comput. Biol. 4, e1000109 (2008).

  14. 14.

    & Elongation dynamics shape bursty transcription and translation. Proc. Natl. Acad. Sci. USA 106, 2583–2588 (2009).

  15. 15.

    , , & Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophys. J. 91, 4350–4367 (2006).

  16. 16.

    Sigma cascades in prokaryotic regulatory networks. Proc. Natl. Acad. Sci. USA 102, 4933–4934 (2005).

  17. 17.

    , , & Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

  18. 18.

    , , , & Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99, 9697–9702 (2002).

  19. 19.

    , , , & Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13, 216–223 (2003).

  20. 20.

    et al. Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 106, 864–869 (2009).

  21. 21.

    & Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619 (2001).

  22. 22.

    & Burstiness and memory in complex systems. Epl 81, 48002 (2008).

  23. 23.

    & Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136 (2001).

  24. 24.

    , & Frequency domain chemical Langevin analysis of stochasticity in gene transcriptional regulation. J. Theor. Biol. 229, 383–394 (2004).

  25. 25.

    et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

  26. 26.

    , , , & Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

  27. 27.

    , , & Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 104, 6043–6048 (2007).

  28. 28.

    & Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett. 84, 5447–5450 (2000).

  29. 29.

    , & Further inducibility of a constitutive system: ultrainduction of the gal operon. J. Bacteriol. 173, 2319–2327 (1991).

  30. 30.

    & The galactose regulon of Escherichia coli. Mol. Microbiol. 10, 245–251 (1993).

  31. 31.

    & The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7, 410–413 (1999).

  32. 32.

    & Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J. Biol. Chem. 265, 11605–11614 (1990).

  33. 33.

    et al. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA. J. Biol. Chem. 281, 15238–15248 (2006).

  34. 34.

    & Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli. J. Bacteriol. 189, 369–376 (2007).

  35. 35.

    & Use of bio-lac fusion strains to study regulation of biotin biosynthesis in Escherichia coli. J. Bacteriol. 143, 789–800 (1980).

  36. 36.

    & Positive autoregulation of cI is a dispensable feature of the phage lambda gene regulatory circuitry. J. Bacteriol. 187, 6430–6442 (2005).

  37. 37.

    , & Lambda repressor: a model system for understanding protein-DNA interactions and protein stability. Adv. Protein Chem. 40, 1–61 (1990).

  38. 38.

    & Alternative packing arrangements in the hydrophobic core of lambda repressor. Nature 339, 31–36 (1989).

  39. 39.

    , , & Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

  40. 40.

    , , , & Transcription by the numbers redux: experiments and calculations that surprise. Trends Cell Biol. 20, 723–733 (2010).

  41. 41.

    & Biological role of noise encoded in a genetic network motif. Proc. Natl. Acad. Sci. USA 107, 13300–13305 (2010).

  42. 42.

    , , & Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

  43. 43.

    & Noise propagation in gene networks. Science 307, 1965–1969 (2005).

  44. 44.

    & Biological role of noise encoded in a genetic network motif. Proc. Natl. Acad. Sci. USA 107, 13300–13305 (2010).

  45. 45.

    , , , & Using noise to probe and characterize gene circuits. Proc. Natl. Acad. Sci. USA 105, 10809–10814 (2008).

  46. 46.

    , , & Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

  47. 47.

    , & Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

  48. 48.

    , , , & Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

  49. 49.

    et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

  50. 50.

    & Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114, 1–21 (1977).

  51. 51.

    et al. Activities of constitutive promoters in Escherichia coli. J. Mol. Biol. 292, 19–37 (1999).

  52. 52.

    Rererer. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (American Society for Microbiology, Washington, D.C., 1987).

  53. 53.

    & Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

  54. 54.

    et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

  55. 55.

    et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

  56. 56.

    & RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310–11315 (2004).

  57. 57.

    An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC, Boca Raton, Florida, USA, 2007).

  58. 58.

    , & Information flow and optimization in transcriptional regulation. Proc. Natl. Acad. Sci. USA 105, 12265–12270 (2008).

  59. 59.

    , & Optimizing information flow in small genetic networks. Phys. Rev. E 80, 031920 (2009).

  60. 60.

    A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).

  61. 61.

    et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

  62. 62.

    et al. Protein dynamics in drug combinations: a linear superposition of individual-drug responses. Cell 140, 643–651 (2010).

  63. 63.

    et al. Quantitative analysis of the transcription control mechanism. Mol. Syst. Biol. 6, 431 (2010).

  64. 64.

    & Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).

  65. 65.

    & Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

  66. 66.

    , , , & Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98, L32–L34 (2010).

  67. 67.

    , , & Heritable stochastic switching revealed by single-cell genealogy. PLoS Biol. 5, e239 (2007).

  68. 68.

    , , & A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442–446 (2008).

  69. 69.

    et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).

  70. 70.

    , , , & Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol. 6, 440 (2010).

  71. 71.

    et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

  72. 72.

    et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).

  73. 73.

    , , & The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol. Cell 24, 747–757 (2006).

  74. 74.

    , & Tuning in to noise: epigenetics and intangible variation. Dev. Cell 19, 649–650 (2010).

  75. 75.

    Exact stochastic simulation of coupled chemical-reactions. J. Phys. Chem. 81, 2340–2361 (1977).

Download references

Acknowledgements

We are grateful to S. Adhya, W. Boos, M. Cashel, V. Chakravartty, L. Chubiz, D. Court, J. Cronan, M. Dreyfus, M. Elowitz, Y. Feng, H. Garcia, T. Hwa, J. Imlay, S. Jang, T. Kuhlman, J. Little, A. van Oudenaarden, A. Raj, C. Rao, R. Milo, V. Shahrezaei, A. Sokac and P. Swain for advice and for providing reagents. We thank members of the Golding laboratory for providing help with experiments. We thank H. Garcia, J. Kondev, R. Phillips, A. Raj, Á. Sánchez, S. Sawai and G. Tkacˇik for commenting on earlier versions of the manuscript. Work in the Golding laboratory was supported by grants from US National Institutes of Health (R01GM082837) and the National Science Foundation (082265, PFC: Center for the Physics of Living Cells). Work in the Segev and Golding laboratories was supported by a joint grant from the Human Frontier Science Program (RGY 70/2008).

Author information

Affiliations

  1. Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.

    • Lok-hang So
    • , Leonardo A Sepúlveda
    •  & Ido Golding
  2. Department of Physics, University of Illinois, Urbana, Illinois, USA.

    • Lok-hang So
    • , Chenghang Zong
    •  & Ido Golding
  3. Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

    • Anandamohan Ghosh
    •  & Ronen Segev
  4. Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

    • Anandamohan Ghosh
    •  & Ronen Segev
  5. Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, USA.

    • Leonardo A Sepúlveda
    •  & Ido Golding
  6. Center for the Physics of Living Cells, University of Illinois, Urbana, Illinois, USA.

    • Ido Golding

Authors

  1. Search for Lok-hang So in:

  2. Search for Anandamohan Ghosh in:

  3. Search for Chenghang Zong in:

  4. Search for Leonardo A Sepúlveda in:

  5. Search for Ronen Segev in:

  6. Search for Ido Golding in:

Contributions

I.G., L.-h.S. and R.S. designed the project. L.-h.S. performed the majority of experiments and the theoretical analysis of gene activity. L.A.S. and C.Z. performed additional experiments and developed analysis tools for gene activity. R.S. and A.G. performed the information theory analysis. I.G., L.-h.S., L.A.S., R.S. and A.G. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ido Golding.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–18, Supplementary Tables 1–6 and Supplementary Note.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.821

Further reading