Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput identification of genetic interactions in HIV-1

A study characterizes the in vitro replicative capacity of over 70,000 clinical isolates of HIV-1 in the absence of drugs, or in the presence of one of 15 individual drugs. The largest survey of the effects of mutations on fitness undertaken in any organism, this study finds extensive pairwise interactions among over 1,800 variable sites identified through sequencing the protease and reverse transcriptase genes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Single and higher-order epistatic interactions in HIV evolution.


  1. Richman, D.D. et al. Trans. Am. Clin. Climatol. Assoc. 115, 289–303 (2004).

    PubMed  PubMed Central  Google Scholar 

  2. Shafer, R.W. J. Infect. Dis. 194, S51–S58 (2006).

    Article  Google Scholar 

  3. da Silva, J., Coetzer, M., Nedellec, R., Pastore, C. & Mosier, D.E. Genetics 185, 293–303 (2010).

    Article  CAS  Google Scholar 

  4. Bonhoeffer, S., Chappey, C., Parkin, N.T., Whitcomb, J.M. & Petropolous, C.J. Science 306, 1547–1550 (2004).

    Article  CAS  Google Scholar 

  5. Phillips, P.C. Genetics 149, 1167–1171 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinkley, T. et al. Nat. Genet. 43, 487–489 (2011).

    Article  CAS  Google Scholar 

  7. Petropoulos, C.J. et al. Antimicrob. Agents Chemother. 44, 920–928 (2000).

    Article  CAS  Google Scholar 

  8. Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M. & Tans, S.J. Nature 445, 383–386 (2007).

    Article  CAS  Google Scholar 

  9. Dean, A.M. & Thornton, J.W. Nat. Rev. Genet. 8, 675–688 (2007).

    Article  CAS  Google Scholar 

  10. Efron, B., Hastie, T., Johnston, I. & Tibshirani, R. Ann. Stat. 32, 407–499 (2002).

    Google Scholar 

  11. Candes, E. & Tao, T. Ann. Stat. 35, 2141–2351 (2007).

    Google Scholar 

  12. Tokuriki, N. & Tawfik, D.S. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  Google Scholar 

  13. Wright, S. in Proceedings of the Sixth International Congress of Genetics (ed. Jones, D.F.) 356–366 (Brooklyn Botanic Garden, Menasha, Wisconsin, USA, 1932).

    Google Scholar 

  14. Maynard Smith, J. Nature 225, 563–564 (1970).

    Article  Google Scholar 

  15. Weinreich, D.M., Watson, R.A. & Chao, L. Evolution 59, 1165–1174 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel M Weinreich.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weinreich, D. High-throughput identification of genetic interactions in HIV-1. Nat Genet 43, 398–400 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing