Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature

Abstract

We report mapping of a quantitative trait locus (QTL) with a major effect on bovine stature to a 780-kb interval using a Hidden Markov Model–based approach that simultaneously exploits linkage and linkage disequilibrium. We re-sequenced the interval in six sires with known QTL genotype and identified 13 clustered candidate quantitative trait nucleotides (QTNs) out of >9,572 discovered variants. We eliminated five candidate QTNs by studying the phenotypic effect of a recombinant haplotype identified in a breed diversity panel. We show that the QTL influences fetal expression of seven of the nine genes mapping to the 780-kb interval. We further show that two of the eight candidate QTNs, mapping to the PLAG1-CHCHD7 intergenic region, influence bidirectional promoter strength and affect binding of nuclear factors. By performing expression QTL analyses, we identified a splice site variant in CHCHD7 and exploited this naturally occurring null allele to exclude CHCHD7 as single causative gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage mapping of a body size QTL in an HF × J F2 cross.
Figure 2: Linkage and LD fine-mapping of the body size QTL.
Figure 3: Annotated genes and markers within the re-sequenced 780-kb QTL interval.
Figure 4: Effect of QTN genotype on the expression level of nine positional candidate genes in fetal liver, bone, muscle and brain.
Figure 5: Effects of ss319607405 and ss319607406 on bidirectional promoter strength using a luciferase reporter assay.
Figure 6: Effect of QTL genotype on binding of trans-acting nuclear factors.
Figure 7: Exploiting a naturally occurring null allele to exclude the causality of the CHCHD7 gene.

Similar content being viewed by others

References

  1. Stern, D.L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).

    Article  CAS  Google Scholar 

  2. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  3. Schadt, E.E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009).

    Article  CAS  Google Scholar 

  4. Galton, F. Regression towards mediocrity in hereditary stature. J. R. Anthropol. Inst. 5, 329–348 (1885).

    Google Scholar 

  5. Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  6. Visscher, P.M. et al. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am. J. Hum. Genet. 81, 1104–1110 (2007).

    Article  CAS  Google Scholar 

  7. Weedon, M.N. & Frayling, T.M. Reaching new heights: insights into the genetics of human stature. Trends Genet. 24, 595–603 (2008).

    Article  CAS  Google Scholar 

  8. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  Google Scholar 

  9. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  Google Scholar 

  10. Sutter, N.B. et al. A single IGF1 allele is a major determinant of small size in dogs. Science 316, 112–115 (2007).

    Article  CAS  Google Scholar 

  11. Boyko, A.R. et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 8, e1000451 (2010).

    Article  Google Scholar 

  12. Nelsen, T.C. et al. Heritabilities and genetic correlations of growth and reproductive measurements in Hereford bulls. J. Anim. Sci. 63, 409–417 (1986).

    Article  CAS  Google Scholar 

  13. Northcutt, S.L. & Wilson, D.E. Genetic parameter estimates and expected progeny differences for mature size in Angus cattle. J. Anim. Sci. 71, 1148–1153 (1993).

    Article  CAS  Google Scholar 

  14. McClure, M.C. et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41, 597–607 (2010).

    Article  CAS  Google Scholar 

  15. Arias, J.A., Keehan, M., Fisher, P., Coppieters, W. & Spelman, R. A high density linkage map of the bovine genome. BMC Genet. 10, 18 (2009).

    Article  Google Scholar 

  16. Haley, C.S. et al. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136, 1195–1207 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Coppieters, W. et al. A rank-based non parametric method to map QTL in outbred half-sib pedigrees: application to milk production in a grand-daughter design. Genetics 149, 1547–1555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Visscher, P.M. et al. Confidence intervals in QTL mapping by bootstrapping. Genetics 143, 1013–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mizoshita, K. et al. Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J. Anim. Sci. 82, 3415–3420 (2004).

    Article  CAS  Google Scholar 

  20. Takasuga, A. et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome 18, 125–136 (2007).

    Article  Google Scholar 

  21. Buchanan, F.C. et al. Single nucleotide polymorphisms in the corticotrophin-releasing hormone and pro-opiomelancortin genes are associated with growth and carcass yield in beef cattle. Anim. Genet. 36, 127–131 (2005).

    Article  CAS  Google Scholar 

  22. Kneeland, J. et al. Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21, and 23 within one commercial line of Bos taurus. J. Anim. Sci. 82, 3405–3414 (2004).

    Article  CAS  Google Scholar 

  23. Nkrumah, J.D. et al. Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle. J. Anim. Sci. 85, 3170–3181 (2007).

    Article  CAS  Google Scholar 

  24. Mizoshita, K. et al. Identification of a 1.1-Mb region for a carcass weight QTL on bovine Chromosome 14. Mamm. Genome 16, 532–537 (2005).

    Article  Google Scholar 

  25. Druet, T. & Georges, M. An efficient haplotype-based approach for combined linkage and linkage disequilibrium QTL mapping using Hidden Markov Models. Genetics 184, 789–798 (2010).

    Article  CAS  Google Scholar 

  26. Matukumalli, L.K. et al. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 4, e5350 (2009).

    Article  Google Scholar 

  27. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. (Sinauer, Sunderland, Massachusetts, USA, 1997).

    Google Scholar 

  28. Gudbjartsson, D.F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  Google Scholar 

  29. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40, 584–591 (2008).

    Article  CAS  Google Scholar 

  30. Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 5, e1000445 (2009).

    Article  Google Scholar 

  31. Cho, Y.S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  Google Scholar 

  32. Kim, J.J. et al. Identification of 15 loci influencing height in a Korean population. J. Hum. Genet. 55, 27–31 (2010).

    Article  Google Scholar 

  33. Okada, Y. et al. A genome-wide association study in 19,633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci. Hum. Mol. Genet. 19, 2303–2312 (2010).

    Article  CAS  Google Scholar 

  34. Ge, B. et al. Survey of allelic expression using EST mining. Genome Res. 15, 1584–1591 (2005).

    Article  CAS  Google Scholar 

  35. Trinklein, N.D. et al. An abundance of bidirectional promoters in the human genome. Genome Res. 14, 62–66 (2004).

    Article  CAS  Google Scholar 

  36. McGowan, K.A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    Article  CAS  Google Scholar 

  37. Sagata, N. What does Mos do in occytes and somatic cells? Bioessays 19, 13–21 (1997).

    Article  CAS  Google Scholar 

  38. Van Dyck, F. et al. PLAG1, the prototype of the PLAG gene family: versatility in tumour development. Int. J. Oncol. 30, 765–774 (2007).

    CAS  PubMed  Google Scholar 

  39. Voz, M.L. et al. Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene 23, 179–191 (2004).

    Article  CAS  Google Scholar 

  40. Hensen, K. et al. Targeted disruption of the murine Plag1 proto-oncogene causes growth retardation and reduced fertility. Dev. Growth Differ. 46, 459–470 (2004).

    Article  CAS  Google Scholar 

  41. Ross, S.A., McCaffrey, P.J., Drager, U.C. & De Luca, L.M. Retinoids in embryonal development. Physiol. Rev. 80, 1021–1054 (2000).

    Article  CAS  Google Scholar 

  42. Kieffer, B.L. et al. Exploring the opioid system by gene knock-out. Prog. Neurobiol. 66, 285–306 (2002).

    Article  CAS  Google Scholar 

  43. Georges, M. Mapping, fine-mapping and molecular dissection of Quantitative Trait Loci in domestic animals. Annu. Rev. Genomics Hum. Genet. 8, 131–162 (2007).

    Article  CAS  Google Scholar 

  44. Mackay, T.F. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2, 11–20 (2001).

    Article  CAS  Google Scholar 

  45. Service, P.M. How good are quantitative complementation tests? Sci. SAGE KE 12, pe13 (2004).

    Google Scholar 

  46. Steinmetz, L.M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    Article  CAS  Google Scholar 

  47. McGregor, A.P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007).

    Article  CAS  Google Scholar 

  48. Van Laere, A.S. et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832–836 (2003).

    Article  CAS  Google Scholar 

  49. Nezer, C. et al. Haplotype sharing refines the location of an imprinted QTL with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics 165, 277–285 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    Article  CAS  Google Scholar 

  51. Long, A.D., Lyman, R.F., Langley, C.H. & Mackay, T.F. Genetic interactions between naturally occurring alleles at QTL and mutant alleles at candidate loci affecting bristle number in D. melanogaster. Genetics 144, 1497–1510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yalcin, B. et al. Genetic dissection of behavioral QTL shows that Rgs2 modulates anxiety in mice. Nat. Genet. 36, 1197–1202 (2004).

    Article  CAS  Google Scholar 

  53. 1000 Genomes Project Consortium. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  54. Coppieters, W. et al. A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm. Genome 9, 540–544 (1998).

    Article  CAS  Google Scholar 

  55. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Misztal, I. et al. BLUPF90 and related programs (BGF90). In: 7th World Congress on Genetics Applied to Livestock Production (Montpelier, 19–23 August 2002).

    Google Scholar 

  57. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging multiple internal control genes. Genome Biol. 3, research0034 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Livestock Improvement Corporation (LIC; Hamilton, New Zealand) and by grants from the Unit of Animal Genomics, the University of Liège, the Communauté Française de Belgique (ARC Biomod) and the Belgian Science Policy Organisation (SSTC Genefunc PAI). T.D. is Research Associate of the Fond National de Recherche Scientifique. We are grateful for the support of the GIGA-R sequencing core facility.

Author information

Authors and Affiliations

Authors

Contributions

J.A.C.A., B.L.H., M.D.K. and R.J.S. designed and performed line-cross QTL mapping in the F2 population. L.K., L.L., N.C., B.G. and W.C. developed additional BTA14 markers, genotyped the F2 population and performed half-sibling QTL mapping. T.D., F.F. and W.C. performed combined linkage and LD QTL fine mapping. L.K. and W.C. performed high throughput resequencing and analysis of the 780-kb confidence interval. L.L. performed sequence finishing of the 780-kb interval. L.K., N.C. and W.C. performed haplotype analysis in the breed diversity panel. S.R.D. collected fetal samples. L.K., H.T. and L.L. checked the integrity of the open reading frames. H.T., L.L., M.D.L. and M.G. performed quantitative RT-PCR experiments. H.T. performed the allelic imbalance tests. H.T. performed the reporter assays. L.K. and H.T. performed the EMSA. S.R.D., M.D.K. and R.J.S. generated and performed initial analysis of the transcriptome data. T.D., D.B. and W.C. performed eQTL analyses. L.L. analyzed the effect of the CHCHD7 splice site variant. W.C. and T.D. performed the QCA. M.G. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Michel Georges.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–3 and Supplementary Note. (PDF 6262 kb)

Supplementary Table 4

Expression data for eQTL analysis (XLS 190 kb)

Supplementary Table 5

Pedigree file for eQTL analysis (XLS 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, L., Takeda, H., Lin, L. et al. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43, 405–413 (2011). https://doi.org/10.1038/ng.814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing