Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression


Most preneoplastic lesions are quiescent and do not progress to form overt tumors. It has been proposed that oncogenic stress activates the DNA damage response and the key tumor suppressor p53, which prohibits tumor growth. However, the molecular pathways by which cells sense a premalignant state in vivo are largely unknown. Here we report that tissue-specific inactivation of the stress signaling kinase MKK7 in KRasG12D-driven lung carcinomas and NeuT-driven mammary tumors markedly accelerates tumor onset and reduces overall survival. Mechanistically, MKK7 acts through the kinases JNK1 and JNK2, and this signaling pathway directly couples oncogenic and genotoxic stress to the stability of p53, which is required for cell cycle arrest and suppression of epithelial cancers. These results show that MKK7 functions as a major tumor suppressor in lung and mammary cancer in mouse and identify MKK7 as a vital molecular sensor to set a cellular anti-cancer barrier.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MKK7 controls onset, incidence and progression of KRasG12D-driven lung tumorigenesis.
Figure 2: Mapk8+/−; Mapk9−/− compound mutant mice phenocopy the effect of MKK7 deletion.
Figure 3: The MKK7-JNK pathway controls p53 expression in lung cancer.
Figure 4: MKK7 regulates senescence and p53 stability.
Figure 5: Loss of MKK7 can be rescued by overexpression of p53.
Figure 6: MKK7 controls onset and incidence of NeuT-driven mammary cancer.


  1. 1

    Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Wagner, E.F. & Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Chen, N. et al. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 61, 3908–3912 (2001).

    CAS  PubMed  Google Scholar 

  4. 4

    She, Q.B., Chen, N., Bode, A.M., Flavell, R.A. & Dong, Z. Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 62, 1343–1348 (2002).

    CAS  PubMed  Google Scholar 

  5. 5

    Behrens, A., Jochum, W., Sibilia, M. & Wagner, E.F. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657–2663 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Kennedy, N.J. et al. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev. 17, 629–637 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Nateri, A.S., Spencer-Dene, B. & Behrens, A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437, 281–285 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Sancho, R. et al. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J. 28, 1843–1854 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Tournier, C. et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 15, 1419–1426 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Weston, C.R. et al. The c-Jun NH2-terminal kinase is essential for epidermal growth factor expression during epidermal morphogenesis. Proc. Natl. Acad. Sci. USA 101, 14114–14119 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Zenz, R. et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev. Cell 4, 879–889 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Jackson, E.L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Nikitin, A.Y. et al. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res. 64, 2307–2316 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Fisher, G.H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Gorgoulis, V.G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Meek, D.W. Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 9, 714–723 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Efeyan, A. et al. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS ONE 4, e5475 (2009).

    Article  Google Scholar 

  23. 23

    Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Zhang, Z. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat. Genet. 29, 25–33 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Lehman, T.A. et al. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res. 51, 4090–4096 (1991).

    CAS  PubMed  Google Scholar 

  26. 26

    Aas, T. et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 2, 811–814 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Fuchs, S.Y. et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 12, 2658–2663 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Das, M. et al. Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc. Natl. Acad. Sci. USA 104, 15759–15764 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Schreiber, M. et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Eferl, R. et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181–192 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Hu, M.C., Qiu, W.R. & Wang, Y.P. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene 15, 2277–2287 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Buschmann, T. et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21, 2743–2754 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Oleinik, N.V., Krupenko, N.I. & Krupenko, S.A. Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26, 7222–7230 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Jackson, E.L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Herbst, R.S., Heymach, J.V. & Lippman, S.M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Costa, A. & Zanini, V. Precancerous lesions of the breast. Nat. Clin. Pract. Oncol. 5, 700–704 (2008).

    Article  Google Scholar 

  38. 38

    Zhou, Y. et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat. Biotechnol. 28, 71–78 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Kissil, J.L. et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res. 67, 8089–8094 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Young, N.P. & Jacks, T. Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras. Proc. Natl. Acad. Sci. USA 107, 10184–10189 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Coles, C. et al. p53 mutations in breast cancer. Cancer Res. 52, 5291–5298 (1992).

    CAS  PubMed  Google Scholar 

  42. 42

    Boggio, K. et al. Interleukin 12–mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188, 589–596 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Wagner, K.U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    CAS  Article  Google Scholar 

  44. 44

    García-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    Article  Google Scholar 

  45. 45

    Sabapathy, K. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T cell apoptosis and proliferation. J. Exp. Med. 193, 317–328 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    CAS  Article  Google Scholar 

  47. 47

    Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  Article  Google Scholar 

  48. 48

    Kim, N., Odgren, P.R., Kim, D.K., Marks, S.C. Jr. & Choi, Y. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl. Acad. Sci. USA 97, 10905–10910 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Bortnick, A.E. et al. Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L869–L878 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Fata, J.E. et al. The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFalpha and FGF7 in morphogenesis of mouse mammary epithelium. Dev. Biol. 306, 193–207 (2007).

    CAS  Article  Google Scholar 

Download references


We thank all members of our laboratories for discussions; H. Scheuch and M. Radolf for microarray support; and E. Wagner for reading the manuscript. D.S. is supported by the EU INFLA-CARE network. J.M.P. is supported by grants from IMBA, the Austrian Ministry of Sciences, the Austrian Academy of Sciences, GEN-AU (AustroMouse) and an EU ERC Advanced Grant. V.G.G. and A.K. are supported by the EU-grants INFLA-CARE and GENICA.

Author information




D.S. designed and performed most experiments. A.K. and V.G.G. performed the DNA damage and p53 immunohistochemistry and analysis. A.M. performed all RT-PCR analyses. T.W. generated the MKK7floxed mice. U.E. and V.S. helped with immunohistochemistry. R.-H.Z. analyzed the tumor section as the expert pathologist. J.A.P. and G.G.N. helped in microarray and gene set enrichment analysis. G.F. and M.S. contributed to the characterization of the ErbB-2 and Super p53 transgenic mice, respectively. J.M.P. coordinated the project and wrote the manuscript with D.S.

Corresponding author

Correspondence to Josef M Penninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Tables 1 and 2. (PDF 2629 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schramek, D., Kotsinas, A., Meixner, A. et al. The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nat Genet 43, 212–219 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing