Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1

Abstract

The domestication of cereals has involved common changes in morphological features, such as seed size, seed retention and modification of vegetative and inflorescence architecture that ultimately contributed to an increase in harvested yield1. In barley, this process has resulted in two different cultivated types, two-rowed and six-rowed forms, both derived from the wild two-rowed ancestor, with archaeo-botanical evidence indicating the origin of six-rowed barley early in the domestication of the species, some 8,600–8,000 years ago2. Variation at SIX-ROWED SPIKE 1 (VRS1) is sufficient to control this phenotype. However, phenotypes imposed by VRS1 alleles are modified by alleles at the INTERMEDIUM-C (INT-C) locus. Here we show that INT-C is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 (TB1) and identify 17 coding mutations in barley TB1 correlated with lateral spikelet fertility phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inflorescence and tillering phenotypes of alleles of INTERMEDIUM-C.
Figure 2: Genome-wide and local association scans and mutant analyses.

Similar content being viewed by others

References

  1. Doebley, J.F., Gaut, B.S. & Smith, B.D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    Article  CAS  Google Scholar 

  2. Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley (Oxford Univ. Press, New York, New York, USA, 2000).

  3. Forster, B.P. et al. The barley phytomer. Ann. Bot. (Lond.) 100, 725–733 (2007).

    Article  Google Scholar 

  4. Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 104, 1424–1429 (2007).

    Article  CAS  Google Scholar 

  5. Lundqvist, U., Franckowiak, J.D. & Konishi, T. New and revised descriptions of barley genes. Barley Genet. Newsl. 26, 22–516 (1997).

    Google Scholar 

  6. Kirby, E.J.M. & Riggs, T.J. Developmental consequences of two-row and six-row ear type in spring barley: 2. Shoot apex, leaf and tiller development. J. Agric. Sci. Camb. 91, 207–216 (1978).

    Article  Google Scholar 

  7. Lundqvist, U. & Lundqvist, A. Induced intermedium mutants in barley: origin, morphology and inheritance. Hereditas 108, 13–26 (1988).

    Article  Google Scholar 

  8. Lundqvist, U. & Lundqvist, A. The co-operation between intermedium genes and the six-row gene hex-v in a six-row variety of barley. Hereditas 110, 227–233 (1989).

    Article  Google Scholar 

  9. Druka, A. et al. Genetic dissection of barley morphology and development. Plant Physiol. 155, 1–11 (2011).

    Article  Google Scholar 

  10. Fischbeck, G. Diversification through breeding. in Diversity in Barley (Hordeum Vulgare). (eds. von Bothmer, R., van Hintum, T., Knüpffer, H. & Sato, K.) 29–52 (Elsevier, San Diego, California, 2003).

  11. Rostoks, N. et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc. Natl. Acad. Sci. USA 103, 18656–18661 (2006).

    Article  CAS  Google Scholar 

  12. Caldwell, K.S., Russell, J., Langridge, P. & Powell, W. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172, 557–567 (2006).

    Article  CAS  Google Scholar 

  13. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  CAS  Google Scholar 

  14. Takeda, T. et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513–520 (2003).

    Article  CAS  Google Scholar 

  15. Peng, J. et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  Google Scholar 

  16. Chandler, P.M. et al. Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol. 129, 181–190 (2002).

    Article  CAS  Google Scholar 

  17. Hubbard, L., McSteen, P., Doebley, J. & Hake, S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162, 1927–1935 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark, R.M., Nussbaum Wagler, T., Quijada, P. & Doebley, J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 38, 594–597 (2006).

    Article  CAS  Google Scholar 

  19. Lukens, L. & Doebley, J. Molecular evolution of the teosinte branched gene among maize and related grasses. Mol. Biol. Evol. 18, 627–638 (2001).

    Article  CAS  Google Scholar 

  20. Nobuta, K. et al. An expression atlas of rice mRNAs and small RNAs. Nat. Biotechnol. 25, 473–477 (2007).

    Article  CAS  Google Scholar 

  21. Lewis, J.M. et al. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep. 27, 1217–1225 (2008).

    Article  CAS  Google Scholar 

  22. Zhu, H. et al. Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor. Appl. Genet. 99, 1221–1232 (1999).

    Article  CAS  Google Scholar 

  23. Harlan, J.R. On the origin of barley. in Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, Utilization, Pests 10–36 (USDA Agric. Handb. No. 338, 1979).

  24. Saisho, D. & Purugganan, M. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177, 1765–1776 (2007).

    Article  CAS  Google Scholar 

  25. Camus-Kulandaivelu, L. et al. Patterns of molecular evolution associated with two selective sweeps in the Tb1Dwarf8 region in maize. Genetics 180, 1107–1121 (2008).

    Article  CAS  Google Scholar 

  26. Buckler, E.S.I.V., Thornsberry, J.M. & Kresovich, S. Molecular diversity, structure and domestication of grasses. Genet. Res. 77, 213–218 (2001).

    Article  CAS  Google Scholar 

  27. Paterson, A.H. et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1718 (1995).

    Article  CAS  Google Scholar 

  28. Close, T.J. et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10, 582 (2009).

    Article  Google Scholar 

  29. Payne, R.W. (ed.) GenStat Release 10 Reference Manual, Part 3 Procedure Library PL18. (VSN International, Hemel Hempstead, 2007).

    Google Scholar 

  30. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2005).

    Article  Google Scholar 

  31. Malosetti, M. et al. A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175, 879–889 (2007).

    Article  CAS  Google Scholar 

  32. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by UK Sustainable Arable LINK 302 / BB/D522003/1 'Association Genetics of Elite UK Barleys' and United States Department of Agriculture-Cooperative State Research, Education and Extension Service-National Research Institute (USDA-CSREES-NRI) grant no. 2006-55606-16722 'Barley Coordinated Agricultural Project; leveraging Genomics, Genetics, and Breeding for Gene Discovery and Barley Improvement'. We thank A. Roberts and S. Chapman (Scottish Crop Research Institute) for technical advice and M. Boulton and T. Moore (John Innes Centre) for guidance on sequencing SLENDER1.

Author information

Authors and Affiliations

Authors

Contributions

L.R., J.C. and R.W. drafted the manuscript. J.C. and K.M. performed statistical analyses. T.J.C. led the SNP genotyping effort. L.R., A.D., N.B. and M.M. provided additional genotyping information. A.D. performed detailed phenotyping data, including scanning electron microscopy work. C.S. and J.F. provided expression data. A.D., D.F.M., W.T.B.T., P.M.H., U.L., J.D.F., T.J.C. and G.J.M. made important suggestions to the analytical plan, aided interpretation of results and participated in revising the manuscript.

Corresponding author

Correspondence to Robbie Waugh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 2–4 and Supplementary Figure 1–8 (PDF 349 kb)

Supplementary Table 1

List of the 190 lines used in survey showing VRS1 and INT-C alleles (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, L., Comadran, J., Druka, A. et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43, 169–172 (2011). https://doi.org/10.1038/ng.745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing