Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Non-genetic heterogeneity from stochastic partitioning at cell division

Abstract

Gene expression involves inherently probabilistic steps that create fluctuations in protein abundances. The results from many in-depth analyses and genome-scale surveys have suggested how such fluctuations arise and spread, often in ways consistent with stochastic models of transcription and translation. But fluctuations also arise during cell division when molecules are partitioned stochastically between the two daughters. Here we mathematically demonstrate how stochastic partitioning contributes to the non-genetic heterogeneity. Our results show that partitioning errors are hard to correct, and that the resulting noise profiles are remarkably difficult to separate from gene expression noise. By applying these results to common experimental strategies and distinguishing between creation versus transmission of noise, we hypothesize that much of the cell-to-cell heterogeneity that has been attributed to various aspects of gene expression instead comes from random segregation at cell division. We propose experiments to separate between these two types of fluctuations and discuss future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growing and dividing cells.
Figure 2: Partitioning errors mimic gene expression noise.
Figure 3: Partitioning errors are difficult to effectively correct during the cell cycle.

Similar content being viewed by others

References

  1. Warren, G. Membrane partitioning during cell division. Annu. Rev. Biochem. 62, 323–348 (1993).

    Article  CAS  Google Scholar 

  2. Marshall, W.F. Stability and robustness of an organelle number control system: modeling and measuring homeostatic regulation of centriole abundance. Biophys. J. 93, 1818–1833 (2007).

    Article  CAS  Google Scholar 

  3. Birky, C.W. Jr. The partitioning of cytoplasmic organelles at cell division. Int. Rev. Cytol. Suppl. 15, 49–89 (1983).

    PubMed  Google Scholar 

  4. Nordströem, K. & Austin, S.J. Mechanisms that contribute to the stable segregation of plasmids. Annu. Rev. Genet. 23, 37–69 (1989).

    Article  Google Scholar 

  5. Mantzaris, N.V. From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys. J. 92, 4271–4288 (2007).

    Article  CAS  Google Scholar 

  6. Cookson, N.A., Cookson, S.W., Tsimring, L.S. & Hasty, J. Cell cycle-dependent variations in protein concentration. Nucleic Acids Res. 38, 2676–2681 (2010).

    Article  CAS  Google Scholar 

  7. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  8. Raser, J.M. & O′Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1845 (2004).

    Article  CAS  Google Scholar 

  9. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

    Article  CAS  Google Scholar 

  10. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).

    Article  CAS  Google Scholar 

  11. Newman, J.R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  Google Scholar 

  12. Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).

    Article  CAS  Google Scholar 

  13. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    Article  CAS  Google Scholar 

  14. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  15. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys. 34, 1–59 (2001).

    Article  CAS  Google Scholar 

  16. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  Google Scholar 

  17. Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005).

    Article  Google Scholar 

  18. Berg, O.G. A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol. 71, 587–603 (1978).

    Article  CAS  Google Scholar 

  19. Rigney, D.R. Stochastic model of constitutive protein levels in growing and dividing bacterial cells. J. Theor. Biol. 76, 453–480 (1979).

    Article  CAS  Google Scholar 

  20. Swain, P.S., Elowitz, M.B. & Siggia, E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  Google Scholar 

  21. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  22. Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    Article  CAS  Google Scholar 

  23. Pedraza, J.M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008).

    Article  CAS  Google Scholar 

  24. Paulsson, J. & Ehrenberg, M. Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks. Phys. Rev. Lett. 84, 5447–5450 (2000).

    Article  CAS  Google Scholar 

  25. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    Article  CAS  Google Scholar 

  26. Maxwell, J.C. On governors. Proceedings of the Royal Society 16, 270–283 (1867).

    Google Scholar 

  27. Cannon, W.B. The Wisdom of the Body (Norton, New York, New York, USA,1932).

  28. Kar, S., Baumann, W.T., Paul, M.R. & Tyson, J.J. Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 106, 6471–6476 (2009).

    Article  CAS  Google Scholar 

  29. Palsson, B.O. & Lightfoot, E.N. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops. J. Theor. Biol. 113, 279–298 (1985).

    Article  CAS  Google Scholar 

  30. Bergeland, T., Widerberg, J., Bakke, O. & Nordeng, T.W. Mitotic partitioning of endosomes and lysosomes. Curr. Biol. 11, 644–651 (2001).

    Article  CAS  Google Scholar 

  31. McAuley, P.J. Partitioning of symbiotic chlorella at host cell telophase in the green hydra symbiosis. Phil. Trans. R. Soc. Lond. B 329, 47–53 (1990).

    Article  Google Scholar 

  32. Savage, D.F., Afonso, B., Chen, A.H. & Silver, P.A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).

    Article  CAS  Google Scholar 

  33. Wilson, E.B. The distribution of the chondriosomes to the spermatozoa in scorpions. Proc. Natl. Acad. Sci. USA 2, 321–324 (1916).

    Article  CAS  Google Scholar 

  34. Wilson, E.B. The distribution of sperm-forming materials in scorpions. J. Morphol. Physiol. 52, 429–483 (1931).

    Article  Google Scholar 

  35. Hood, R.D., Watson, O.F., Deason, T.R. & Benton, C.L.B. Jr. Ultrastructure of scorpion spermatozoa with atypical axonemes. Cytobios 5, 167–177 (1972).

    CAS  PubMed  Google Scholar 

  36. Shima, D.T., Haldar, K., Pepperkok, R., Watson, R. & Warren, G. Partitioning of the Golgi apparatus during mitosis in living HeLa cells. J. Cell Biol. 137, 1211–1228 (1997).

    Article  CAS  Google Scholar 

  37. Hennis, A.S. & Birky, C.W. Stochastic partitioning of chloroplasts at cell division in the alga Olisthodiscus, and compensating control of chloroplast replication. J. Cell Sci. 70, 1–15 (1984).

    CAS  PubMed  Google Scholar 

  38. Sheahan, M.B., Rose, R.J. & McCurdy, D.W. Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J. 37, 379–390 (2004).

    Article  CAS  Google Scholar 

  39. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  40. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X.S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  41. Cai, L., Friedman, N. & Xie, X.S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    Article  CAS  Google Scholar 

  42. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  43. Grünwald, D., Singer, R.H., Czaplinski, K. & Lynne, E.M.M.K. Chapter 27 Cell biology of mRNA decay. in Methods in Enzymology 448, 553–577 (Academic Press, 2008).

    Article  Google Scholar 

  44. Paulsson, J. Prime movers of noisy gene expression. Nat. Genet. 37, 925–926 (2005).

    Article  CAS  Google Scholar 

  45. Paulsson, J., Berg, O.G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97, 7148–7153 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation grants DMS-074876-0 and CAREER 0720056 and by grant GM081563-02 from the US National Institutes of Health. We thank I. Golding for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.H. and J.P. jointly conceived the study, derived the results and wrote the paper.

Corresponding author

Correspondence to Johan Paulsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, D., Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Genet 43, 95–100 (2011). https://doi.org/10.1038/ng.729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.729

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics