The developmental dynamics of the maize leaf transcriptome

Abstract

We have analyzed the maize leaf transcriptome using Illumina sequencing. We mapped more than 120 million reads to define gene structure and alternative splicing events and to quantify transcript abundance along a leaf developmental gradient and in mature bundle sheath and mesophyll cells. We detected differential mRNA processing events for most maize genes. We found that 64% and 21% of genes were differentially expressed along the developmental gradient and between bundle sheath and mesophyll cells, respectively. We implemented Gbrowse, an electronic fluorescent pictograph browser, and created a two-cell biochemical pathway viewer to visualize datasets. Cluster analysis of the data revealed a dynamic transcriptome, with transcripts for primary cell wall and basic cellular metabolism at the leaf base transitioning to transcripts for secondary cell wall biosynthesis and C4 photosynthetic development toward the tip. This dataset will serve as the foundation for a systems biology approach to the understanding of photosynthetic development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Defining developmental and physiological characters along a B73 seedling leaf.
Figure 2: RNA-seq analysis of B73 leaf transcriptome.
Figure 3: Alternative splicing of GRMZM2G147687.
Figure 4: Dynamic progression of leaf transcriptome.
Figure 5: Dynamics of transcription factor accumulation profiles.
Figure 6: eFP browser view of expression changes over leaf development.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Husbands, A.Y., Chitwood, D.H., Plavskin, Y. & Timmermans, M.C. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev. 23, 1986–1997 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Hay, A. & Tsiantis, M.A. KNOX family TALE. Curr. Opin. Plant Biol. 12, 593–598 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Bayer, E.M. et al. Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev. 23, 373–384 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Kirchanski, S.J. The ultrastructural development of the dimorphic plastids of Zea mays L. Am. J. Bot. 62, 695–705 (1975).

    Article  Google Scholar 

  5. 5

    Leech, R.M., Rumsby, M.G. & Thomson, W.W. Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol. 52, 240–245 (1973).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Lopez-Juez, E. & Pyke, K.A. Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 49, 557–577 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Woodson, J.D. & Chory, J. Coordination of gene expression between organellar and nuclear genomes. Nat. Rev. Genet. 9, 383–395 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Esau, K. Ontogeny of the vascular bundle in Zea mays. Hilgardia 15, 327–368 (1943).

    Google Scholar 

  9. 9

    Evert, R.F., Russin, W.A. & Bosabalidis, A.M. Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. Int. J. Plant Sci. 157, 247–261 (1996).

    Article  Google Scholar 

  10. 10

    Sharman, B.C. Developmental anatomy of the shoot of Zea mays L. Ann. Bot. (Lond.) 6, 245–284 (1942).

    Article  Google Scholar 

  11. 11

    Poethig, R.S. & Szymkowiak, E.J. Clonal analysis of leaf development in maize. Maydica 40, 67–76 (1995).

    Google Scholar 

  12. 12

    Sylvester, A.W., Cande, W.Z. & Freeling, M. Division and differentiation during normal and liguleless-1 maize leaf development. Development 110, 985–1000 (1990).

    CAS  PubMed  Google Scholar 

  13. 13

    Sheen, J. C4 gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 187–217 (1999).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Hatch, M.D. & Slack, C.R. Photosynthesis by sugar-cane leaves: A new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101, 103–111 (1966).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sage, R.F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Sawers, R.J., Liu, P., Anufrikova, K., Hwang, J.T. & Brutnell, T.P. A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics 8, 12 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Friso, G., Majeran, W., Huang, M., Sun, Q. & van Wijk, K.J. Reconstruction of metabolic pathways, protein expression and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts; large scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152, 1219–1250 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Majeran, W., Cai, Y., Sun, Q. & van Wijk, K.J. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17, 3111–3140 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Majeran, W. et al. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol. Cell. Proteomics 7, 1609–1638 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Schnable, P.S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Filichkin, S.A. et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 20, 45–58 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wang, B.B., O′Toole, M., Brendel, V. & Young, N.D. Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol. 8, 17 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Wang, B.B. & Brendel, V. Genomewide comparative analysis of alternative splicing in plants. Proc. Natl. Acad. Sci. USA 103, 7175–7180 (2006).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Barbazuk, W.B., Fu, Y. & McGinnis, K.M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res. 18, 1381–1392 (2008).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Severing, E.I., van Dijk, A.D., Stiekema, W.J. & van Ham, R.C. Comparative analysis indicates that alternative splicing in plants has a limited role in functional expansion of the proteome. BMC Genomics 10, 154 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Thimm, O. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Wingler, A., Walker, R.P., Chen, Z.H. & Leegood, R.C. Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol. 120, 539–546 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A. & Timmermans, M.C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Juarez, M.T., Twigg, R.W. & Timmermans, M.C. Specification of adaxial cell fate during maize leaf development. Development 131, 4533–4544 (2004).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Liu, T., Ohashi-Ito, K. & Bergmann, D.C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development 136, 2265–2276 (2009).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Lee, W.Y., Lee, D., Chung, W.I. & Kwon, C.S. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 58, 511–524 (2009).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Hall, L.N., Rossini, L., Cribb, L. & Langdale, J.A. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10, 925–936 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yanagisawa, S. & Sheen, J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10, 75–89 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Stein, L.D. et al. The generic genome browser: a building block for a model organism system database. Genome Res. 12, 1599–1610 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  36. 36

    Winter, D. et al. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Lycett, G. The role of Rab GTPases in cell wall metabolism. J. Exp. Bot. 59, 4061–4074 (2008).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Gou, J.Y., Yu, X.H. & Liu, C.J. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 18855–18860 (2009).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Molina, I., Li-Beisson, Y., Beisson, F., Ohlrogge, J.B. & Pollard, M. Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol. 151, 1317–1328 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ohtsu, K. et al. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J. 52, 391–404 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Xu, T., Purcell, M., Zucchi, P., Helentjaris, T. & Bogorad, L. TRM1, a YY1-like suppressor of rbcS-m3 expression in maize mesophyll cells. Proc. Natl. Acad. Sci. USA 98, 2295–2300 (2001).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Hannemann, J. et al. Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computer-readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy. Plant Cell Environ. 32, 1185–1200 (2009).

    Article  PubMed  Google Scholar 

  43. 43

    Zhu, X.G., Long, S.P. & Ort, D.R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Snyder, M. & Gallagher, J.E. Systems biology from a yeast omics perspective. FEBS Lett. 583, 3895–3899 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Brady, S.M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806 (2007).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Reidel, E.J., Rennie, E.A., Amiard, V., Cheng, L. & Turgeon, R. Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol. 149, 1601–1608 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  48. 48

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Li, P. et al. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated. Plant Cell Environ. 31, 1673–1687 (2008).

    Article  PubMed  Google Scholar 

  51. 51

    Winnall, W.R. et al. Effects of chronic celecoxib on testicular function in normal and lipopolysaccharide-treated rats. Int. J. Androl. 32, 542–555 (2009).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (IOS-0701736 to R.T., P.L., Q.S., T.N. and T.P.B.). C.R.M. acknowledges support from a grant to the International Rice Research Institute from the Bill and Melinda Gates Foundation and T.P.B. acknowledges support from the iPlant Collaborative for development of the eFP browser.

Author information

Affiliations

Authors

Contributions

T.P.B., T.N. and R.T. designed the experiments. P. Li, L.P., N.G., E.J.R. and T.H.K. optimized and performed the experiments. Q.S., L.P., P. Liu, P. Li, L.W., Y.S., R.P., T.P.B., N.P., N.G., S.L.T. and C.R.M. performed data analysis. P. Li, L.P., T.N., N.G., S.L.T. and T.P.B. wrote the manuscript.

Corresponding author

Correspondence to Thomas P Brutnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–13 and Supplementary Note (PDF 8744 kb)

Supplementary Table 2

Verification of RNA-seq results by qRT-PCR. (XLS 35 kb)

Supplementary Table 3

List of the K-means clusters. (XLS 4141 kb)

Supplementary Table 4

List of genes exhibiting differential expression between bundle sheath and mesophyll cells. (XLS 1078 kb)

Supplementary Table 5

Correlation between RNA-seq and proteomics data in the bundle sheath and mesophyll cells. (XLS 268 kb)

Supplementary Table 6

List of C4 genes and their expression changes along developmental zones. (XLS 41 kb)

Supplementary Table 7

List of differentially expressed transcription factors in the developmental zones and bundle sheath and mesophyll cells. (XLS 725 kb)

Supplemenatry Table 8

List of gene ID?s and RPKM estimates for Supplementary Figs. 8-12. (XLS 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, P., Ponnala, L., Gandotra, N. et al. The developmental dynamics of the maize leaf transcriptome. Nat Genet 42, 1060–1067 (2010). https://doi.org/10.1038/ng.703

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing