Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin

Subjects

Abstract

Basaloid skin tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma, are associated with aberrant Hedgehog (Hh) signaling1 and, in the case of BCC, an expanding set of genetic variants including keratin 5 (encoded by KRT5)2, an intermediate filament-forming protein. We here show that genetic ablation of keratin 17 (Krt17) protein, which is induced in basaloid skin tumors3,4 and co-polymerizes with Krt5 in vivo5, delays basaloid follicular hamartoma tumor initiation and growth in mice with constitutive Hh signaling in epidermis6,7. This delay is preceded by a reduced inflammation and a polarization of inflammatory cytokines from a Th1- and Th17-dominated profile to a Th2-dominated profile. Absence of Krt17 also attenuates hyperplasia and inflammation in models of acute dermatitis. Re-expression of Krt17 in Gli2tg; Krt17−/− keratinocytes induces select Th1 chemokines that have established roles in BCC. Our findings establish an immunomodulatory role for Krt17 in Hh driven basaloid skin tumors that could impact additional tumor settings, psoriasis and wound repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absence of Krt17 delays the onset of ear lesions and epidermal hyperplasia in Gli2tg mice.
Figure 2: Role of inflammation in the onset of ear lesions.
Figure 3: Absence of Krt17 blunts epidermal hyperplasia and alters inflammation in a chemical model of dermatitis.

Similar content being viewed by others

References

  1. Epstein, E.H. Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer 8, 743–754 (2008).

    Article  CAS  Google Scholar 

  2. Stacey, S.N. et al. New common variants affecting susceptibility to basal cell carcinoma. Nat. Genet. 41, 909–914 (2009).

    Article  CAS  Google Scholar 

  3. Markey, A.C., Lane, E.B., Macdonald, D.M. & Leigh, I.M. Keratin expression in basal cell carcinomas. Br. J. Dermatol. 126, 154–160 (1992).

    Article  CAS  Google Scholar 

  4. Yu, M. et al. Superficial, nodular, and morpheiform basal-cell carcinomas exhibit distinct gene expression profiles. J. Invest. Dermatol. 128, 1797–1805 (2008).

    Article  CAS  Google Scholar 

  5. Larouche, D., Tong, X., Fradette, J., Coulombe, P.A. & Germain, L. Vibrissa hair bulge houses two populations of skin epithelial stem cells distinct by their keratin profile. FASEB J. 22, 1404–1415 (2008).

    Article  CAS  Google Scholar 

  6. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet. 24, 216–217 (2000).

    Article  CAS  Google Scholar 

  7. Grachtchouk, V. et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J. 22, 2741–2751 (2003).

    Article  CAS  Google Scholar 

  8. Jih, D. et al. Familial basaloid follicular hamartoma: lesional characterization and review of the literature. Am. J. Dermatopathol. 25, 130–137 (2003).

    Article  Google Scholar 

  9. Callahan, C.A. et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev. 18, 2724–2729 (2004).

    Article  CAS  Google Scholar 

  10. McGowan, K.M. et al. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev. 16, 1412–1422 (2002).

    Article  CAS  Google Scholar 

  11. Kerns, M.L., DePianto, D., Dinkova-Kostova, A.T., Talalay, P. & Coulombe, P.A. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc. Natl. Acad. Sci. USA 104, 14460–14465 (2007).

    Article  CAS  Google Scholar 

  12. Cataisson, C. et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 69, 319–328 (2009).

    Article  CAS  Google Scholar 

  13. Elias, P.M. & Schmuth, M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 9, 437–446 (2009).

    Article  CAS  Google Scholar 

  14. Demehri, S., Morimoto, M., Holtzman, M.J. & Kopan, R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 7, e1000067 (2009).

    Article  Google Scholar 

  15. Bradley, P.P., Priebat, D.A., Christensen, R.D. & Rothstein, G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78, 206–209 (1982).

    Article  CAS  Google Scholar 

  16. Hardman, M.J., Sisi, P., Banbury, D.N. & Byrne, C. Patterned acquisition of skin barrier function during development. Development 125, 1541–1552 (1998).

    CAS  Google Scholar 

  17. Berger, A. Th1 and Th2 responses: what are they? Br. Med. J. 321, 424 (2000).

    Article  CAS  Google Scholar 

  18. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  Google Scholar 

  19. Nickoloff, B.J. Cracking the cytokine code in psoriasis. Nat. Med. 13, 242–244 (2007).

    Article  CAS  Google Scholar 

  20. Phillips, W.G., Feldmann, M., Breathnach, S.M. & Brennan, F.M. Modulation of the IL-1 cytokine network in keratinocytes by intracellular IL-1 α and IL-1 receptor antagonist. Clin. Exp. Immunol. 101, 177–182 (1995).

    Article  CAS  Google Scholar 

  21. Lund, S.A., Giachelli, C.M. & Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal. 3, 311–322 (2009).

    Article  Google Scholar 

  22. Jee, S.H. et al. Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J. Invest. Dermatol. 123, 1169–1175 (2004).

    Article  CAS  Google Scholar 

  23. Hattori, Y. et al. Vascular expression of matrix metalloproteinase-13 (collagenase-3) in basal cell carcinoma. Exp. Mol. Pathol. 74, 230–237 (2003).

    Article  CAS  Google Scholar 

  24. Ying, S. et al. C–C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C–C chemokines (monocyte chemoattractant protein-3 and RANTES). J. Immunol. 163, 3976–3984 (1999).

    CAS  PubMed  Google Scholar 

  25. Yuspa, S.H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis–thirty-third G. H. A. Clowes Memorial Award Lecture. Cancer Res. 54, 1178–1189 (1994).

    CAS  PubMed  Google Scholar 

  26. Eckert, R.L. et al. S100 proteins in the epidermis. J. Invest. Dermatol. 123, 23–33 (2004).

    Article  CAS  Google Scholar 

  27. Braff, M.H., Bardan, A., Nizet, V. & Gallo, R.L. Cutaneous defense mechanisms by antimicrobial peptides. J. Invest. Dermatol. 125, 9–13 (2005).

    Article  CAS  Google Scholar 

  28. Miyazaki, H. et al. Down-regulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res. 66, 4279–4284 (2006).

    Article  CAS  Google Scholar 

  29. Lo, B.K. et al. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinoma. Am. J. Pathol. 176, 2435–2446 (2010).

    Article  CAS  Google Scholar 

  30. Pasparakis, M. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases. Nat. Rev. Immunol. 9, 778–788 (2009).

    Article  CAS  Google Scholar 

  31. Tensen, C.P. et al. Genomic organization, sequence and transcriptional regulation of the human CXCL 11(1) gene. Biochim. Biophys. Acta 1446, 167–172 (1999).

    Article  CAS  Google Scholar 

  32. Smith, J.B. et al. Cloning and genomic localization of the murine LPS-induced CXC chemokine (LIX) gene, Scyb5. Immunogenetics 54, 599–603 (2002).

    Article  CAS  Google Scholar 

  33. Bunting, K. et al. Genome-wide analysis of gene expression in T cells to identify targets of the NF-κ B transcription factor c-Rel. J. Immunol. 178, 7097–7109 (2007).

    Article  CAS  Google Scholar 

  34. Tong, X. & Coulombe, P.A. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion. Genes Dev. 20, 1353–1364 (2006).

    Article  CAS  Google Scholar 

  35. Kim, S., Wong, P. & Coulombe, P.A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441, 362–365 (2006).

    Article  CAS  Google Scholar 

  36. van de Rijn, M. et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol. 161, 1991–1996 (2002).

    Article  CAS  Google Scholar 

  37. Sarbia, M. et al. Differentiation between pancreaticobiliary and upper gastrointestinal adenocarcinomas: is analysis of cytokeratin 17 expression helpful? Am. J. Clin. Pathol. 128, 255–259 (2007).

    Article  Google Scholar 

  38. Paus, R., Ito, N., Takigawa, M. & Ito, T. The hair follicle and immune privilege. J. Investig. Dermatol. Symp. Proc. 8, 188–194 (2003).

    Article  Google Scholar 

  39. McGowan, K.M. & Coulombe, P.A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143, 469–486 (1998).

    Article  CAS  Google Scholar 

  40. Bernot, K.M., Coulombe, P.A. & McGowan, K.M. Keratin 16 expression defines a subset of epithelial cells during skin morphogenesis and the hair cycle. J. Invest. Dermatol. 119, 1137–1149 (2002).

    Article  CAS  Google Scholar 

  41. Bernot, K.M., Coulombe, P.A. & Wong, P. Skin: an ideal model system to study keratin genes and proteins. Methods Cell Biol. 78, 453–487 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Han for technical support and J. Seykora for expertise. These studies were supported in part by grants CA123530 and AR44232 to P.A.C., fellowship grant F32 CA110618 to D.D. and grant CA087837 to A.A.D., all from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.D. conceived and led the execution of all experiments and participated in the interpretation of the results and manuscript production. M.L.K. contributed expertise about inflammatory and immune cytokines and assisted D.D. in the execution and interpretation of many experiments.

A.A.D. contributed expertise on mouse skin tumor models and skin tumor histology and participated in manuscript production. P.A.C. conceived the experiments along with D.D. and participated in the interpretation of the results and manuscript production.

Corresponding author

Correspondence to Pierre A Coulombe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DePianto, D., Kerns, M., Dlugosz, A. et al. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet 42, 910–914 (2010). https://doi.org/10.1038/ng.665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.665

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer