Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia

Abstract

CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals experienced spontaneous regression of their JMML but developed vasculitis later in life. Importantly, JMML specimens from affected children show loss of the normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common p.371Y>H altered Cbl protein induces cytokine-independent growth and constitutive phosphorylation of ERK, AKT and S6 only in hematopoietic cells in which normal Cbl expression is reduced by RNA interference. We conclude that germline CBL mutations have developmental, tumorigenic and functional consequences that resemble disorders that are caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome and Legius syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autosomal dominant germline mutations in CBL are associated with a phenotype, GM-CSF hypersensitivity and vasculitis.
Figure 2: Consequences of splice site mutations in cDNA from individuals D347, D647 and I066.
Figure 3: p.371Y>H does not confer cytokine sensitivity or cytokine independent growth until silencing of mouse Cbl.
Figure 4: Cbl mutant proteins show prolonged protein turnover and are associated with increased phosphorylated EGFR upon EGF stimulation.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Niemeyer, C.M. & Kratz, C.P. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br. J. Haematol. 140, 610–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Locatelli, F. et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 105, 410–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Matsuda, K. et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 109, 5477–5480 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Flotho, C. et al. Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 111, 966–967 author reply 967–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Niemeyer, C.M. et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 89, 3534–3543 (1997).

    CAS  PubMed  Google Scholar 

  6. Kalra, R., Paderanga, D., Olson, K. & Shannon, K.M. Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84, 3435–3439 (1994).

    CAS  PubMed  Google Scholar 

  7. Loh, M.L. et al. Somatic mutations in PTPN11 implicate the protein tyrosine phosphatase SHP-2 in leukemogenesis. Blood 103, 2325–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Shannon, K.M. et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N. Engl. J. Med. 330, 597–601 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Levine, R.L. et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 106, 3377–3379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Onida, F. et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood 99, 840–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Braun, B.S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl. Acad. Sci. USA 101, 597–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Chan, I.T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113, 528–538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le, D.T. et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103, 4243–4250 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Mohi, M.G. et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 7, 179–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Emanuel, P.D., Bates, L.J., Castleberry, R.P., Gualtieri, R.J. & Zuckerman, K.S. Seletive hypersensitivity to granulocyte-macrophage colony stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 77, 925–929 (1991).

    CAS  PubMed  Google Scholar 

  17. Ramshaw, H.S., Bardy, P.G., Lee, M.A. & Lopez, A.F. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp. Hematol. 30, 1124–1131 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Dunbar, A.J. et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 68, 10349–10357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grand, F.H. et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113, 6181–6192 (2009).

    Article  Google Scholar 

  20. Loh, M.L. et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114, 1859–1863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanada, M. et al. Gain-of-function of mutated C–CBL tumour suppressor in myeloid neoplasms. Nature 460, 904–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Makishima, H. et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J. Clin. Oncol. 27, 6109–6116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bader-Meunier, B. et al. Occurrence of myeloproliferative disorder in patients with the Noonan syndrome. J. Pediatr. 130, 885–889 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Tartaglia, M. et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet. 70, 1555–1563 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rauen, K.A. et al. Proceedings from the 2009 genetic syndromes of the Ras/MAPK pathway: from bedside to bench and back. Am. J. Med. Genet. A 152A, 4–24 (2009).

    Article  Google Scholar 

  26. Chan, R.J., Cooper, T., Kratz, C.P., Weiss, B. & Loh, M.L. Juvenile myelomonocytic leukemia: A report from the 2nd International JMML Symposium. Leuk. Res. 33, 355–362 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hasle, H. et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 17, 277–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kotecha, N. et al. Single-cell profiling identifies aberrant stat5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14, 335–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schubbert, S. et al. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106, 311–317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langdon, W.Y., Hyland, C.D., Grumont, R.J. & Morse, H.C. III. The c-cbl proto-oncogene is preferentially expressed in thymus and testis tissue and encodes a nuclear protein. J. Virol. 63, 5420–5424 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Andoniou, C.E., Thien, C.B. & Langdon, W.Y. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J. 13, 4515–4523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blake, T.J., Shapiro, M., Morse, H.C. III & Langdon, W.Y. The sequences of the human and mouse c–cbl proto-oncogenes show v–cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653–657 (1991).

    CAS  PubMed  Google Scholar 

  33. Kassenbrock, C.K. & Anderson, S.M. Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J. Biol. Chem. 279, 28017–28027 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Thien, C.B. & Langdon, W.Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Dittmer, D. et al. Gain of function mutations in p53. Nat. Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Lang, G.A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Robertson, H., Hime, G.R., Lada, H. & Bowtell, D.D. A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene 19, 3299–3308 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat. Immunol. 3, 1192–1199 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kitaura, Y. et al. Control of the B cell-intrinsic tolerance programs by ubiquitin ligases Cbl and Cbl-b. Immunity 26, 567–578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto, S., Nakano, H., Singh, G. & Katyal, S. Expression of Spred and Sprouty in developing rat lung. Mech. Dev. 119 Suppl 1, S303–S309 (2002).

    Article  PubMed  Google Scholar 

  41. Oishi, K. et al. Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Hum. Mol. Genet. 15, 543–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Pai, L.M., Barcelo, G. & Schupbach, T. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103, 51–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. The, I. et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276, 791–794 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schubbert, S. et al. Biochemical and functional characterization of germ line KRAS mutations. Mol. Cell. Biol. 27, 7765–7770 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mullighan, C.G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 106, 9414–9418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, X., Huang, D.Y., Huong, S.M. & Huang, E.S. Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat. Med. 11, 515–521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the generous participation of the families included in this report. Supported in part by the US National Institutes of Health (CA113557 to M.L.L.); the V Foundation for Cancer Research (M.L.L. and B.S.B.); NIH/NCI (K08 CA103868 to B.S.B., R01 CA104282 to M.L.L. and B.S.B.); The Leukemia Lymphoma Society (6059-09, 2157-08 to M.L.L.); the Frank A. Campini Foundation (M.L.L. and B.S.B.); The Concern Foundation (B.S.B.); Deutsche Forschungsgemeinschaft (KR3473/1-1 to C.F.); Deutsche Krebshilfe (108220 to C.M.N. and C.F.); Deutsche José Carreras Leukämie-Stiftung (R08/19 to C.F.); the Canadian Cancer Society (16056 to M.O.); and the National Institute of General Medical Sciences (T32GM007618 to D.H.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.M.N. coordinated and collected clinical data from the subjects with EWOG-MDS and wrote the manuscript; M.W.K. collected clinical data, performed laboratory assays including sequencing, proliferation assays and prepared figures; D.H.S. performed laboratory assays including the shRNA experiments, the proliferation assays and protein blots; I.F. collected clinical data; M.E. collected subject samples and performed mutational analysis on highly purified populations of blood cells; N.J.B. contributed subject samples; S.B. performed ubiquitin assays; J.Z.F. and K.M.S. contributed subject samples; T.A.G. performed RNA isolation and cDNA sequencing; P.M. contributed subject samples; I.S., G.K., S.C., P.J.L., C.K. and P.G.S. contributed subject samples; A.H. provided age-matched control samples from children with asthma; M.S. performed mutational analysis; J.S., M.M.v.H., H.H. and F.L. contributed subject samples and collected clinical data; D.S. collected clinical data; S.A. performed colony assays and performed cDNA sequencing; L.C. collected clinical data; R.C.R. and S.S.S. performed ubiquitylation assays; M.O. supervised the ubiquitylation assays and wrote the manuscript; B.S.B. oversaw the shRNA and cell proliferative experiments and wrote the manuscript; C.F. collected clinical data and performed sequencing; M.L.L. coordinated and collected clinical and laboratory data from the USA, oversaw all of the laboratory work, coordinated the data and wrote the manuscript.

Corresponding authors

Correspondence to Charlotte M Niemeyer or Mignon L Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Note (PDF 2618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, C., Kang, M., Shin, D. et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 42, 794–800 (2010). https://doi.org/10.1038/ng.641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.641

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer