Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association study of intracranial aneurysm identifies three new risk loci

Abstract

Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with 832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with intracranial aneurysms in the combined dataset, including intervals near RBBP8 on 18q11.2 (odds ratio (OR) = 1.22, P = 1.1 × 10−12), STARD13-KL on 13q13.1 (OR = 1.20, P = 2.5 × 10−9) and a gene-rich region on 10q24.32 (OR = 1.29, P = 1.2 × 10−9). We also confirmed prior associations near SOX17 (8q11.23–q12.1; OR = 1.28, P = 1.3 × 10−12) and CDKN2A-CDKN2B (9p21.3; OR = 1.31, P = 1.5 × 10−22). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting the proliferation and senescence of progenitor-cell populations that are responsible for vascular formation and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association analysis results in the discovery cohort.
Figure 2: Regional plots for associated regions.
Figure 3: Consistency of association across cohorts.

Similar content being viewed by others

References

  1. Rinkel, G.J., Djibuti, M., Algra, A. & van Gijn, J. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29, 251–256 (1998).

    Article  CAS  Google Scholar 

  2. Bilguvar, K. et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat. Genet. 40, 1472–1477 (2008).

    Article  CAS  Google Scholar 

  3. Iwamoto, H. et al. Prevalence of intracranial saccular aneurysms in a Japanese community based on a consecutive autopsy series during a 30-year observation period. The Hisayama study. Stroke 30, 1390–1395 (1999).

    Article  CAS  Google Scholar 

  4. Salmela, E. et al. Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in Northern Europe. PLoS One 3, e3519 (2008).

    Article  Google Scholar 

  5. Jakkula, E. et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am. J. Hum. Genet. 83, 787–794 (2008).

    Article  CAS  Google Scholar 

  6. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  Google Scholar 

  7. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  8. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article  CAS  Google Scholar 

  9. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  10. Stephens, M. & Balding, D.J. Bayesian statistical methods for genetic association studies. Nat. Rev. Genet. 10, 681–690 (2009).

    Article  CAS  Google Scholar 

  11. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl. Cancer Inst. 96, 434–442 (2004).

    Article  Google Scholar 

  12. Helgadottir, A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217–224 (2008).

    Article  CAS  Google Scholar 

  13. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  Google Scholar 

  14. Visel, A. et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412 (2010).

    Article  CAS  Google Scholar 

  15. Yun, M.H. & Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  Google Scholar 

  16. Leung, T.H. et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc. Natl. Acad. Sci. USA 102, 15207–15212 (2005).

    Article  CAS  Google Scholar 

  17. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  Google Scholar 

  18. Schievink, W.I. Genetics of intracranial aneurysms. Neurosurgery 40, 651–662 discussion 662–663 (1997).

    Article  CAS  Google Scholar 

  19. Cannon Albright, L.A. et al. A genealogical assessment of heritable predisposition to aneurysms. J. Neurosurg. 99, 637–643 (2003).

    Article  Google Scholar 

  20. Kamatani, Y. et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 41, 591–595 (2009).

    Article  CAS  Google Scholar 

  21. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  22. Clayton, D. & Leung, H.T. An R package for analysis of whole-genome association studies. Hum. Hered. 64, 45–51 (2007).

    Article  Google Scholar 

  23. de Bakker, P. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  Google Scholar 

  24. Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    Article  CAS  Google Scholar 

  25. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  Google Scholar 

  26. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  27. Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).

    Article  Google Scholar 

  28. Lee, A., Luca, D., Klei, L., Devlin, B. & Roeder, K. Discovering genetic ancestry using spectral graph theory. Genet. Epidemiol. 34, 51–59 (2009).

    Google Scholar 

  29. von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).

    Article  Google Scholar 

  30. Rosenbaum, P. A characterization of optimal designs for observational studies. J.R. Statist. Soc. B 53, 597–610 (1991).

    Google Scholar 

  31. Hansen, B. & Klopfer, S. Optimal full matching and related designs via network flows. J. Comput. Graph. Statist. 15, 609–627 (2006).

    Article  Google Scholar 

  32. Wigginton, J., Cutler, D. & Abecasis, G. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

    Article  CAS  Google Scholar 

  33. Browning, B. & Browning, S. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  CAS  Google Scholar 

  34. Breslow, N. & Day, N. Statistical methods in cancer research. Volume I—the analysis of case-control studies. IARC Sci. Publ. 5–338 (1980).

  35. Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 30, 261–293 (2005).

    Article  Google Scholar 

  36. Higgins, J., Thompson, S., Deeks, J. & Altman, D. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article  Google Scholar 

  37. Goodman, S. Toward evidence-based medical statistics. 2: The Bayes factor. Ann. Intern. Med. 130, 1005–1013 (1999).

    Article  CAS  Google Scholar 

  38. Wakefield, J. Reporting and interpretation in genome-wide association studies. Int. J. Epidemiol. 37, 641–653 (2008).

    Article  Google Scholar 

  39. Clayton, D. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 5, e1000540 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the participants who made this study possible. We thank A. Chamberlain, B. Meseck-Selchow and members of the Keck Foundation Biotechnology Resource Laboratory for their technical help. This study was supported by the Yale Center for Human Genetics and Genomics and the Yale Program on Neurogenetics, the US National Institutes of Health (NIH) grants R01NS057756 (M.G.) and U24 NS051869 (S.M.) and the Howard Hughes Medical Institute (R.P.L.). This study is partially funded by the European Commission under the 6th Framework Programme through the @neurIST (www.aneurist.org) project under contract no. FP6-IST-2004-027703. The Frankfurt case cohort collection was supported by Bundesministerium für Bildung und Forschung (01GI9907), Utrecht Control cohort by the Prinses Beatrix Fonds and the Adessium foundation (L.H.v.d.B.). S.M. was supported in part by the Clinical and Translational Science Award UL1 RR024139, National Center for Research Resources, NIH. We would also like to acknowledge the use of Yale University Biomedical High Performance Computing Center (NIH grant: RR19895).

Author information

Authors and Affiliations

Authors

Contributions

Study Cohorts: ascertainment, characterization and DNA preparation: M.N., M.v.u.z.F., E.G., J.E.J., J.H. and A.P. (Finnish case-control); Y.M.R. and G.J.E.R. (NL cases); P.B., T.D., J. Blasco, G.Z., P.S., R.R., T.S., C.M.F., P.S., A.F.F., V.E., M.C.J.M.S., P.L., J. Byrne, J.M. and D.R. (@neurIST case series); B.K., G.A., M.S., D.K., F.W., A.O., B.S., C.S., J. Beck, F.R., C.R., D.B., C.G., E.I.S., B.M., A.R. and H.S. (DE case series); A.T., A.H., H.K. and I.I. (JP1); S.-K.L., H.Z. and Y.N. (JP2). Control Cohorts: A.A., L.P. and A.P. (Health2000); A.A., L.P. and A.P. (NFBC1966); C.M.v.D. and M.M.B.B. (Rotterdam Study); L.H.v.d.B. and C.W. (Utrecht); T.I. and H.E.W. (KORA-gen); S.S. (PopGen). Genotyping: K.B., Z.A., N.N., A.K.O., E.G., S.M., R.P.L. and M.G. (Yale); C. Perret, C. Proust and F.C. (Aneurist); S.-K.L., H.Z. and Y.N. (JP2). Data management and informatics: K.Y., K.B., Z.A., N.N. and M.G. (Yale); S.-K.L., H.Z. and Y.N. (JP2 cohort); Statistical analysis: K.Y. and M.G. Writing team: K.Y., K.B., M.W.S., R.P.L. and M.G. Study design and analysis plan: K.Y., R.P.L. and M.G.

Corresponding authors

Correspondence to Richard P Lifton or Murat Günel.

Ethics declarations

Competing interests

The authors have a provisional patent application under consideration based on the findings of this work.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–5 and Supplementary Figures 1 and 2 (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuno, K., Bilguvar, K., Bijlenga, P. et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 42, 420–425 (2010). https://doi.org/10.1038/ng.563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing