Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28

Abstract

Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA–deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFG3L2 mutations cause amino acid substitutions in highly conserved regions of the protein.
Figure 2: Complementation studies in S. cerevisiae.
Figure 3: Cytochrome c oxidase enzyme activity and protein levels in yeast cells expressing mutant AFG3L2.
Figure 4: Proteolytic activity of normal and mutant AFG3L2 in yeast.
Figure 5: Molecular modeling of normal and mutant AFG3L2.
Figure 6: Expression of AFG3L2 and paraplegin in human and mouse nervous systems.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

Protein Data Bank

References

  1. Harding, A.E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ′the Drew family of Walworth′. Brain 105, 1–28 (1982).

    Article  CAS  Google Scholar 

  2. Schöls, L., Bauer, P., Schmidt, T., Schulte, T. & Riess, O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 3, 291–304 (2004).

    Article  Google Scholar 

  3. Matilla-Duenas, A. et al. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum published online, doi:10.1007/s12311-009-0144-2 (5 November 2009).

  4. Taroni, F. & DiDonato, S. Pathways to motor incoordination: the inherited ataxias. Nat. Rev. Neurosci. 5, 641–655 (2004).

    Article  CAS  Google Scholar 

  5. Koeppen, A.H. The pathogenesis of spinocerebellar ataxia. Cerebellum 4, 62–73 (2005).

    Article  CAS  Google Scholar 

  6. Orr, H.T. & Zoghbi, H.Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    Article  CAS  Google Scholar 

  7. Soong, B.W. & Paulson, H.L. Spinocerebellar ataxias: an update. Curr. Opin. Neurol. 20, 438–446 (2007).

    Article  CAS  Google Scholar 

  8. Cagnoli, C. et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129, 235–242 (2006).

    Article  Google Scholar 

  9. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  Google Scholar 

  10. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  11. Ito, K. & Akiyama, Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59, 211–231 (2005).

    Article  CAS  Google Scholar 

  12. Koppen, M. & Langer, T. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42, 221–242 (2007).

    Article  CAS  Google Scholar 

  13. Koppen, M., Metodiev, M.D., Casari, G., Rugarli, E.I. & Langer, T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol. Cell. Biol. 27, 758–767 (2007).

    Article  CAS  Google Scholar 

  14. Tatsuta, T. & Langer, T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306–314 (2008).

    Article  CAS  Google Scholar 

  15. Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G. & Pratje, E. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 323, 835–843 (2002).

    Article  CAS  Google Scholar 

  16. Nolden, M. et al. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123, 277–289 (2005).

    Article  CAS  Google Scholar 

  17. Arlt, H., Tauer, R., Feldmann, H., Neupert, W. & Langer, T. The YTA10–12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell 85, 875–885 (1996).

    Article  CAS  Google Scholar 

  18. Arlt, H. et al. The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J. 17, 4837–4847 (1998).

    Article  CAS  Google Scholar 

  19. Suno, R. et al. Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol. Cell 22, 575–585 (2006).

    Article  CAS  Google Scholar 

  20. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182–50187 (2003).

    Article  CAS  Google Scholar 

  21. Tatsuta, T. & Langer, T. AAA proteases in mitochondria: Diverse functions of membrane-bound proteolytic machines. Res. Microbiol. 160, 711–717 (2009).

    Article  CAS  Google Scholar 

  22. Ehses, S. et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187, 1023–1036 (2009).

    Article  CAS  Google Scholar 

  23. DiMauro, S. & Schon, E.A. Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

    Article  CAS  Google Scholar 

  24. Nasir, J. et al. Unbalanced whole arm translocation resulting in loss of 18p in dystonia. Mov. Disord. 21, 859–863 (2006).

    Article  Google Scholar 

  25. Dougan, D.A., Mogk, A., Zeth, K., Turgay, K. & Bukau, B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529, 6–10 (2002).

    Article  CAS  Google Scholar 

  26. Graef, M., Seewald, G. & Langer, T. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol. Cell. Biol. 27, 2476–2485 (2007).

    Article  CAS  Google Scholar 

  27. Graef, M. & Langer, T. Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement. J. Struct. Biol. 156, 101–108 (2006).

    Article  CAS  Google Scholar 

  28. Okuno, T., Yamanaka, K. & Ogura, T. Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. J. Struct. Biol. 156, 109–114 (2006).

    Article  CAS  Google Scholar 

  29. White, S.R. & Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8, 1657–1667 (2007).

    Article  CAS  Google Scholar 

  30. Dunn, C.D., Tamura, Y., Sesaki, H. & Jensen, R.E. Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. Mol. Biol. Cell 19, 5387–5397 (2008).

    Article  CAS  Google Scholar 

  31. Tatsuta, T., Augustin, S., Nolden, M., Friedrichs, B. & Langer, T. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 26, 325–335 (2007).

    Article  CAS  Google Scholar 

  32. Augustin, S. et al. An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases. Mol. Cell 35, 574–585 (2009).

    Article  CAS  Google Scholar 

  33. Augustin, S. et al. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J. Biol. Chem. 280, 2691–2699 (2005).

    Article  CAS  Google Scholar 

  34. Koppen, M., Bonn, F., Ehses, S. & Langer, T. Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol. Biol. Cell 20, 4216–4224 (2009).

    Article  CAS  Google Scholar 

  35. Banfi, S. et al. Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics 59, 51–58 (1999).

    Article  CAS  Google Scholar 

  36. Amiott, E.A. et al. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp. Neurol. 211, 115–127 (2008).

    Article  CAS  Google Scholar 

  37. Stevanin, G., Ruberg, M. & Brice, A. Recent advances in the genetics of spastic paraplegias. Curr. Neurol. Neurosci. Rep. 8, 198–210 (2008).

    Article  Google Scholar 

  38. Maltecca, F. et al. The mitochondrial protease AFG3L2 is essential for axonal development. J. Neurosci. 28, 2827–2836 (2008).

    Article  CAS  Google Scholar 

  39. Maltecca, F. et al. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J. Neurosci. 29, 9244–9254 (2009).

    Article  CAS  Google Scholar 

  40. Manto, M. & Marmolino, D. Cerebellar ataxias. Curr. Opin. Neurol. 22, 419–429 (2009).

    Article  Google Scholar 

  41. Brusco, A. et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch. Neurol. 61, 727–733 (2004).

    Article  Google Scholar 

  42. Gellera, C. et al. Frataxin gene point mutations in Italian Friedreich ataxia patients. Neurogenetics 8, 289–299 (2007).

    Article  CAS  Google Scholar 

  43. Puddu, F. et al. Phosphorylation of the budding yeast 9–1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol. Cell. Biol. 28, 4782–4793 (2008).

    Article  CAS  Google Scholar 

  44. Adams, A., Gottschling, D.E., Kaiser, C.A. & Stearns, T. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

  45. Lemaire, C. & Dujardin, G. Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis. Methods Mol. Biol. 432, 65–81 (2008).

    Article  CAS  Google Scholar 

  46. Magri, S., Fracasso, V., Rimoldi, M. & Taroni, F. Preparation of yeast mitochondria and in vitro assay of respiratory chain complex activities. Nat. Protoc. published online, doi:10.1038/nprot.2010.25 (7 March 2010).

  47. Fracasso, V., Lazzaro, F. & Muzi-Falconi, M. Co-immunoprecipitation of human mitochondrial proteases AFG3L2 and paraplegin heterologously expressed in yeast cells. Nat. Protoc. published online, doi:10.1038/nprot.2010.26 (7 March 2010).

  48. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  Google Scholar 

  49. Finardi, A. et al. NMDA receptor composition differs among anatomically diverse malformations of cortical development. J. Neuropathol. Exp. Neurol. 65, 883–893 (2006).

    Article  CAS  Google Scholar 

  50. Sacco, T., De Luca, A. & Tempia, F. Properties and expression of Kv3 channels in cerebellar Purkinje cells. Mol. Cell. Neurosci. 33, 170–179 (2006).

    Article  CAS  Google Scholar 

  51. Darby, I.A. & Hewitson, T.D. (eds) In Situ Hybridization Protocols. (Humana Press, Totowa, New Jersey, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for participating in this study, our colleagues A. Salmaggi and C.P. Trevisan for referring to us the index patients from families MI-A0762 and MI-A0650, respectively, M. Rimoldi for his help in respiratory chain analysis and V. Seveso for her help with blue native electrophoresis. This work was supported by grants from the Italian Ministry of Health (RF2006 ex art. 56/2005/1 “Malattie Neurodegenerative” to F. Taroni), European Commission FP6 Integrated Project EUROSCA (to F. Taroni and S.D.D.), Telethon-UILDM (GUP04009 to F. Taroni), Fondazione Telethon-Italia (GGP07110 to A. Brusco, GGP030406 to M.M.-F. and GGP09301 to F. Taroni and M.M.-F.), Regione Piemonte Ricerca Sanitaria Finalizzata (to A. Brusco), National Organization for Rare Disorders (to A. Brusco), Regione Piemonte (CIPE 2004, project A183 to F. Tempia), Compagnia di San Paolo (to F. Tempia) and Fondazione Cariplo (to P.P.).

Author information

Authors and Affiliations

Authors

Contributions

D.D.B. and F. Taroni identified the disease gene and characterized the mutations in the cells of affected individuals; D.D.B., F.L., V.F. and S.M. carried out the experiments in yeast; A. Brusco, C.C. and A. Brussino performed preliminary genetic screening and generated AFG3L2 expression plasmid; M.P. and C.G. generated antibodies to AFG3L2 and paraplegin and performed biochemical studies in the cells of affected individuals; A.P. performed molecular modeling of the mutant proteins; G.B. and A.F. performed immunohistochemical studies in human nervous tissue; F. Tempia, T.S. and E.B. performed expression studies in mouse cerebellum; C.M. and S.D.D. made clinical diagnoses and collected clinical data and samples; M.F. and L.V. characterized and contributed data from family RM-DS; F.B. and T.L. provided yeast antibodies, shared unpublished observations and advised on handling of yeast data analysis; C.G., B.C. and S.B. performed preliminary genetic screening and subject selection; B.C. performed quantitative analysis of AFG3L2 gene copy number; F. Taroni, M.M.-F. and P.P. conceived and designed the study and provided financial support; F. Taroni wrote the paper; all others received, edited and approved the manuscript.

Corresponding author

Correspondence to Franco Taroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–3 and Supplementary Figures 1–9 (PDF 5158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Bella, D., Lazzaro, F., Brusco, A. et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42, 313–321 (2010). https://doi.org/10.1038/ng.544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing