Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization

A Corrigendum to this article was published on 01 March 2011

This article has been updated

Abstract

Arthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects. We show that VIPAR forms a functional complex with VPS33B that interacts with RAB11A. Knockdown of vipar in zebrafish resulted in biliary excretion and E-cadherin defects similar to those in individuals with ARC. Vipar- and Vps33b-deficient mouse inner medullary collecting duct (mIMDC-3) cells expressed membrane proteins abnormally and had structural and functional tight junction defects. Abnormal Ceacam5 expression was due to mis-sorting toward lysosomal degradation, but reduced E-cadherin levels were associated with transcriptional downregulation. The VPS33B-VIPAR complex thus has diverse functions in the pathways regulating apical-basolateral polarity in the liver and kidney.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VPS33B interacts with VIPAR.
Figure 2: Intrahepatic defects in individuals with ARC and in Vipar-deficient zebrafish larvae.
Figure 3: Abnormal membrane polarization of mIMCD-3 cells in Vps33b and Vipar deficiencies.
Figure 4: Both Vipar and Vps33b are required for apical junction complex formation.
Figure 5: Abnormalities in cell morphology and growth in Vipar and Vps33b deficiencies.
Figure 6: The VPS33B-VIPAR complex interacts with RAB11A.
Figure 7: Investigation of the intracellular trafficking defects in Vps33b- and Vipar-deficient mIMCD-3 cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 24 February 2011

    In the version of this article initially published, the first and second paragraphs of the Results incorrectly stated that the C14ORF133 gene product was a previously unidentified protein and that no antibody against the C14ORF133 gene product (VIPAR) was available. In fact, an earlier study (ref. 20 in the original manuscript) reported functional analyses of the C14ORF133 gene product (also called SPE-39), described the generation of a polyclonal antibody against human SPE-39 and reported an interaction between SPE-39 and VPS33B, similar to the interaction shown in Figure 1b. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Rodriguez-Boulan, E. & Nelson, W.J. Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725 (1989).

    Article  CAS  Google Scholar 

  2. Shin, K., Fogg, V.C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 22, 207–235 (2006).

    Article  CAS  Google Scholar 

  3. Lubarsky, B. & Krasnow, M.A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  Google Scholar 

  4. Anderson, J.M., Van Itallie, C.M. & Fanning, A.S. Setting up a selective barrier at the apical junction complex. Curr. Opin. Cell Biol. 16, 140–145 (2004).

    Article  CAS  Google Scholar 

  5. Hartsock, A. & Nelson, W.J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    Article  CAS  Google Scholar 

  6. Bryant, D.M. & Mostov, K.E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  Google Scholar 

  7. Wan, H. et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest. 104, 123–133 (1999).

    Article  CAS  Google Scholar 

  8. Izaddoost, S., Nam, S.C., Bhat, M.A., Bellen, H.J. & Choi, K.W. Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416, 178–183 (2002).

    Article  CAS  Google Scholar 

  9. Ceteci, F. et al. Disruption of tumor cell adhesion promotes angiogenic switch and progression to micrometastasis in RAF-driven murine lung cancer. Cancer Cell 12, 145–159 (2007).

    Article  CAS  Google Scholar 

  10. Wapenaar, M.C. et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57, 463–467 (2008).

    Article  CAS  Google Scholar 

  11. Cullinane, A.R. et al. Molecular investigations to improve diagnostic accuracy in patients with ARC syndrome. Hum. Mutat. 30, E330–E337 (2009).

    Article  Google Scholar 

  12. Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T. & Price, A.A. Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. USA 97, 9402–9407 (2000).

    Article  CAS  Google Scholar 

  13. Starai, V.J., Hickey, C.M. & Wickner, W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol. Biol. Cell 19, 2500–2508 (2008).

    Article  CAS  Google Scholar 

  14. Nickerson, D.P., Brett, C.L. & Merz, A.J. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21, 543–551 (2009).

    Article  CAS  Google Scholar 

  15. Peplowska, K., Markgraf, D.F., Ostrowicz, C.W., Bange, G. & Ungermann, C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell 12, 739–750 (2007).

    Article  CAS  Google Scholar 

  16. Kinchen, J.M. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556–566 (2008).

    Article  CAS  Google Scholar 

  17. Edinger, A.L., Cinalli, R.M. & Thompson, C.B. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev. Cell 5, 571–582 (2003).

    Article  CAS  Google Scholar 

  18. Wilkin, M. et al. Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev. Cell 15, 762–772 (2008).

    Article  CAS  Google Scholar 

  19. Richardson, S.C., Winistorfer, S.C., Poupon, V., Luzio, J.P. & Piper, R.C. Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. Mol. Biol. Cell 15, 1197–1210 (2004).

    Article  CAS  Google Scholar 

  20. Zhu, G.D. et al. SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol. Biol. Cell 20, 1223–1240 (2009).

    Article  Google Scholar 

  21. Bogard, N., Lan, L., Xu, J. & Cohen, R.S. Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary. Development 134, 3413–3418 (2007).

    Article  CAS  Google Scholar 

  22. Lock, J.G. & Stow, J.L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    Article  CAS  Google Scholar 

  23. Gissen, P. et al. Clinical and molecular genetic features of ARC syndrome. Hum. Genet. 120, 396–409 (2006).

    Article  CAS  Google Scholar 

  24. Horslen, S.P., Quarrell, O.W. & Tanner, M.S. Liver histology in the arthrogryposis multiplex congenita, renal dysfunction, and cholestasis (ARC) syndrome: report of three new cases and review. J. Med. Genet. 31, 62–64 (1994).

    Article  CAS  Google Scholar 

  25. Gissen, P. et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat. Genet. 36, 400–404 (2004).

    Article  CAS  Google Scholar 

  26. Bull, L.N. et al. VPS33B mutation with ichthyosis, cholestasis, and renal dysfunction but without arthrogryposis: incomplete ARC syndrome phenotype. J. Pediatr. 148, 269–271 (2006).

    Article  CAS  Google Scholar 

  27. Thompson, J.A., Grunert, F. & Zimmermann, W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J. Clin. Lab. Anal. 5, 344–366 (1991).

    Article  CAS  Google Scholar 

  28. Wakabayashi, Y., Lippincott-Schwartz, J. & Arias, I.M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and Rab11-positive endosomes. Mol. Biol. Cell 15, 3485–3496 (2004).

    Article  CAS  Google Scholar 

  29. Nies, A.T. & Keppler, D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers. Arch. 453, 643–659 (2007).

    Article  CAS  Google Scholar 

  30. Bandler, P.E., Westlake, C.J., Grant, C.E., Cole, S.P. & Deeley, R.G. Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol. Pharmacol. 74, 9–19 (2008).

    Article  CAS  Google Scholar 

  31. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451–1455 (1991).

    Article  CAS  Google Scholar 

  32. Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  33. Matthews, R.P. et al. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132, 5295–5306 (2005).

    Article  CAS  Google Scholar 

  34. Farber, S.A. et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388 (2001).

    Article  CAS  Google Scholar 

  35. Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997).

    Article  CAS  Google Scholar 

  36. Matter, K. & Balda, M.S. Functional analysis of tight junctions. Methods 30, 228–234 (2003).

    Article  CAS  Google Scholar 

  37. Aijaz, S., Sanchez-Heras, E., Balda, M.S. & Matter, K. Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2. BMC Cell Biol. 8, 49 (2007).

    Article  Google Scholar 

  38. Liebner, S., Kniesel, U., Kalbacher, H. & Wolburg, H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur. J. Cell Biol. 79, 707–717 (2000).

    Article  CAS  Google Scholar 

  39. Colegio, O.R., Van Itallie, C., Rahner, C. & Anderson, J.M. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. Cell Physiol. 284, C1346–C1354 (2003).

    Article  CAS  Google Scholar 

  40. Hadj-Rabia, S. et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127, 1386–1390 (2004).

    Article  CAS  Google Scholar 

  41. Dawe, H.R. et al. The Meckel-Gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum. Mol. Genet. 16, 173–186 (2007).

    Article  CAS  Google Scholar 

  42. Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  43. Brett, C.L. et al. Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. J. Cell Biol. 182, 1141–1151 (2008).

    Article  CAS  Google Scholar 

  44. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat. Cell Biol. 3, 140–149 (2001).

    Article  CAS  Google Scholar 

  45. Short, B., Haas, A. & Barr, F.A. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim. Biophys. Acta 1744, 383–395 (2005).

    Article  CAS  Google Scholar 

  46. Wilcke, M. et al. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J. Cell Biol. 151, 1207–1220 (2000).

    Article  CAS  Google Scholar 

  47. Savina, A., Fader, C.M., Damiani, M.T. & Colombo, M.I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  Google Scholar 

  48. Ducharme, N.A. et al. Rab11–FIP2 regulates differentiable steps in transcytosis. Am. J. Physiol. Cell Physiol. 293, C1059–C1072 (2007).

    Article  CAS  Google Scholar 

  49. Prekeris, R. Rabs, Rips, FIPs, and endocytic membrane traffic. SciientificWorldJournal 3, 870–880 (2003).

    Article  Google Scholar 

  50. Kikuchi, S. et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat. Genet. 31, 320–325 (2002).

    Article  CAS  Google Scholar 

  51. Rodriguez-Boulan, E. & Müsch, A. Protein sorting in the Golgi complex: shifting paradigms. Biochim. Biophys. Acta 1744, 455–464 (2005).

    Article  CAS  Google Scholar 

  52. Fölsch, H., Mattila, P.E. & Weisz, O.A. Taking the scenic route: biosynthetic traffic to the plasma membrane in polarized epithelial cells. Traffic 10, 972–981 (2009).

    Article  Google Scholar 

  53. Tuma, P.L. & Hubbard, A.L. Transcytosis: crossing cellular barriers. Physiol. Rev. 83, 871–932 (2003).

    Article  CAS  Google Scholar 

  54. Mellman, I. & Nelson, W.J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833–845 (2008).

    Article  CAS  Google Scholar 

  55. Wakabayashi, Y. & Arias, I.M. Transporters on demand: intracellular reservoirs and cycling of bile canalicular ABC transporters. J. Biol. Chem. 281, 27669–27673 (2006).

    Article  CAS  Google Scholar 

  56. Braiterman, L. et al. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G433–G444 (2009).

    Article  CAS  Google Scholar 

  57. Ohannesian, D.W. et al. Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res. 55, 2191–2199 (1995).

    CAS  PubMed  Google Scholar 

  58. Delacour, D. et al. Requirement for galectin-3 in apical protein sorting. Curr. Biol. 16, 408–414 (2006).

    Article  CAS  Google Scholar 

  59. Shao, L., Allez, M., Park, M.S. & Mayer, L. Immunomodulatory roles of the carcinoembryonic antigen family of glycoproteins. Ann. NY Acad. Sci. 1072, 194–209 (2006).

    Article  CAS  Google Scholar 

  60. Nokes, R.L., Fields, I.C., Collins, R.N. & Fölsch, H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J. Cell Biol. 182, 845–853 (2008).

    Article  CAS  Google Scholar 

  61. Uzan-Gafsou, S. et al. Rab11A controls the biogenesis of Birbeck granules by regulating Langerin recycling and stability. Mol. Biol. Cell 18, 3169–3179 (2007).

    Article  CAS  Google Scholar 

  62. Kass, L., Erler, J.T., Dembo, M. & Weaver, V.M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39, 1987–1994 (2007).

    Article  CAS  Google Scholar 

  63. Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  64. Gurdon, J.B. & Bourillot, P.Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  Google Scholar 

  65. Goldstein, B. & Macara, I.G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  Google Scholar 

  66. Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell 9, 365–376 (2005).

    Article  CAS  Google Scholar 

  67. Shaye, D.D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat. Cell Biol. 10, 964–970 (2008).

    Article  CAS  Google Scholar 

  68. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008).

    Article  CAS  Google Scholar 

  69. Müller, T. et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 40, 1163–1165 (2008).

    Article  Google Scholar 

  70. Wakabayashi, Y., Dutt, P., Lippincott-Schwartz, J. & Arias, I.M. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc. Natl. Acad. Sci. USA 102, 15087–15092 (2005).

    Article  CAS  Google Scholar 

  71. Perl, A.K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).

    Article  CAS  Google Scholar 

  72. Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998).

    Article  CAS  Google Scholar 

  73. Yang, J. & Weinberg, R.A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  Google Scholar 

  74. Gissen, P. et al. Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum. Mol. Genet. 14, 1261–1270 (2005).

    Article  CAS  Google Scholar 

  75. Strautnieks, S.S. et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134, 1203–1214 (2008).

    Article  CAS  Google Scholar 

  76. Leung-Hagesteijn, C. et al. Integrin-linked kinase mediates bone morphogenetic protein 7-dependent renal epithelial cell morphogenesis. Mol. Cell. Biol. 25, 3648–3657 (2005).

    Article  CAS  Google Scholar 

  77. Harlow, E. & Lane, D. Using Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1998).

  78. Rappoport, J.Z. & Taha, B.W. Lemeer. S., Benmerah, A. & Simon, S.M. The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J. Biol. Chem. 278, 47357–47360 (2003).

    Article  CAS  Google Scholar 

  79. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

  80. Turner, F.E. et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J. Biol. Chem. 281, 21321–21331 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.R.C. holds the Children Liver Disease Foundation PhD Studentship and P.G. is a GlaxoSmithKline Clinician Scientist. A.Z. and F.M. are supported by Framework 6 IP EUTRACC, LSGH CT 2006037445. H.C. is supported by grants from the European Molecular Biology Organization (ASTF 121:2007) and European Science Foundation (Exchange Grant 2008). J.Z.R. is supported by the Biotechnology and Biosciences Research Council (BB/H002308/1). Thanks to F. Lock for her help with the E-cadherin luciferase assay, G. Reynolds for help with E-cadherin immunostaining and R. Knittel for her help with freeze fracture experiments. The authors also wish to thank all the families and clinicians who contributed to this research and thank the ARC syndrome association; Children Living with Inherited Metabolic Diseases (CLIMB); Birmingham Children's Hospital Research Foundation (BCHRF); WellChild; the Wellcome Trust; and the Intramural Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Institutes of Health, for their generous financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.R.C. designed, conducted and interpreted experiments and wrote the manuscript. A.S.-I., A.Z. and Y.W. designed, conducted and interpreted experiments. C.K.B., G.L., F.R. and H.C. performed experiments. F.G., E.U., T.B.Ö., J.D., J.V., M.D.R., H.M. contributed subjects' DNA. R.P.M., S.G.T., J.Z.R., I.M.A., H.W., A.S.K., D.A.K., F.M. and E.R.M. designed and supervised experiments. P.G. conceived and directed the project, obtained funding and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Paul Gissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table (PDF 1815 kb)

Supplementary Movie 1

YFP-VP33B FLIP confocal live-cell microscopy. YFP-VPS33B was transfected into mIMCD-3 cells and a Fluorescence Loss In Photobleaching (FLIP) experiment was carried out in live cells. Bleaching was done using a 514 nm laser set to 100% every 5 seconds in an area of one cell, with an image captured every 2.5 seconds for a total of 5 minutes. Removal of the free cytoplasmic YFP-VPS33B pool (by photobleaching) reveals occasional cytoplasmic clusters, which are not as pronounced as when VPS33B is co-overexpressed with polarin. (WMV 1307 kb)

Supplementary Movie 2

VSVG-YFP (basolaterally targeted protein), Gal-T-GFP-, and A-VSVG-CFP infected cells were incubated overnight at 40°C. Live cell imaging was performed using a Zeiss 510 inverted confocal microscope with an ×20 objective lens. Pinhole was set fully open. Images were taken every minute. Experiment started 10min after the temperature shift to 32°C (time 0). Relative fluorescence intensities associated with the Golgi (RO1), entire cell (RO2) and plasma membrane (RO3) for one representative cell after shift to 32°C are plotted at 1min intervals. VSVG-YFP infected cells were incubated overnight at 40°C. The experiment was started 10 min after the temperature shift to 32°C (time 0). At 0 min VSVG-YFP intracellular localization of fluorescence was noted. After 140min, VSVG-YFP targeted to the plasma membrane although some intracellular fluorescence remained. Relative fluorescence intensity is calculated using the following equation: (Raw F.I. of - background F.I.) ×100/maximum F.I. (MOV 4936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullinane, A., Straatman-Iwanowska, A., Zaucker, A. et al. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 42, 303–312 (2010). https://doi.org/10.1038/ng.538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing