Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A map of open chromatin in human pancreatic islets

Abstract

Tissue-specific transcriptional regulation is central to human disease1. To identify regulatory DNA active in human pancreatic islets, we profiled chromatin by formaldehyde-assisted isolation of regulatory elements2,3,4 coupled with high-throughput sequencing (FAIRE-seq). We identified 80,000 open chromatin sites. Comparison of FAIRE-seq data from islets to that from five non-islet cell lines revealed 3,300 physically linked clusters of islet-selective open chromatin sites, which typically encompassed single genes that have islet-specific expression. We mapped sequence variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant strongly associated with type 2 diabetes5, is located in islet-selective open chromatin. We found that human islet samples heterozygous for rs7903146 showed allelic imbalance in islet FAIRE signals and that the variant alters enhancer activity, indicating that genetic variation at this locus acts in cis with local chromatin and regulatory changes. These findings illuminate the tissue-specific organization of cis-regulatory elements and show that FAIRE-seq can guide the identification of regulatory variants underlying disease susceptibility.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: FAIRE-seq in human pancreatic islets.
Figure 2: Both proximal and distal FAIRE sites harbor functional regulatory elements.
Figure 3: Islet-selective FAIRE sites form clusters of open regulatory elements (COREs).
Figure 4: Allele-specific open chromatin and enhancer activity at the TCF7L2 locus.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hogan, G.J., Lee, C.K. & Lieb, J.D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nagy, P.L., Cleary, M.L., Brown, P.O. & Lieb, J.D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl. Acad. Sci. USA 100, 6364–6369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grant, S.F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bell, G.I. & Polonsky, K.S. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 414, 788–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Oliver-Krasinski, J.M. & Stoffers, D.A. On the origin of the beta cell. Genes Dev. 22, 1998–2021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Wallrath, L.L., Lu, Q., Granok, H. & Elgin, S.C. Architectural variations of inducible eukaryotic promoters: preset and remodeling chromatin structures. Bioessays 16, 165–170 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gunton, J.E. et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122, 337–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Odom, D.T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Lorenzo, T.P., Peakman, M. & Roep, B.O. Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin. Exp. Immunol. 148, 1–16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCarthy, M.I. & Zeggini, E. Genome-wide association scans for Type 2 diabetes: new insights into biology and therapy. Trends Pharmacol. Sci. 28, 598–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, T.H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xi, H. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bao, L., Zhou, M. & Cui, Y. CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res. 36, D83–D87 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Atouf, F., Czernichow, P. & Scharfmann, R. Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem. 272, 1929–1934 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Fujitani, Y. et al. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev. 20, 253–266 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerrish, K., Van Velkinburgh, J.C. & Stein, R. Conserved transcriptional regulatory domains of the pdx-1 gene. Mol. Endocrinol. 18, 533–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Sander, M. et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127, 5533–5540 (2000).

    CAS  PubMed  Google Scholar 

  24. Edwards, C.A. et al. The evolution of the DLK1–DIO3 imprinted domain in mammals. PLoS Biol. 6, e135 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohlke, K.L., Boehnke, M. & Abecasis, G.R. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum. Mol. Genet. 17, R102–R108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyssenko, V. et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med. 359, 2220–2232 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bouatia-Naji, N. et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320, 1085–1088 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Dillon, N. Gene regulation and large-scale chromatin organization in the nucleus. Chromosome Res. 14, 117–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bucher, P. et al. Assessment of a novel two-component enzyme preparation for human islet isolation and transplantation. Transplantation 79, 91–97 (2005).

    Article  PubMed  Google Scholar 

  34. Latif, Z.A., Noel, J. & Alejandro, R. A simple method of staining fresh and cultured islets. Transplantation 45, 827–830 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Boj, S.F., Parrizas, M., Maestro, M.A. & Ferrer, J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. USA 98, 14481–14486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boyle, A.P., Guinney, J., Crawford, G.E. & Furey, T.S. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24, 2537–2538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. 27, 66–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buck, M.J., Nobel, A.B. & Lieb, J.D. ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol. 6, R97 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miller, W. et al. 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. 17, 1797–1808 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blanchette, M. et al. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res. 16, 656–668 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wingender, E. et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 28, 316–319 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, X., Rigor, P. & Baldi, P. MotifMap: a human genome-wide map of candidate regulatory motif sites. Bioinformatics 25, 167–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Frith, M.C. et al. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 32, 1372–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W. & Lenhard, B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  48. Thomas, P.D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gudmundsson, J. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39, 977–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Sandhu, M.S. et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 39, 951–953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Unoki, H. et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Luco, R.F. et al. A conditional model reveals that induction of hepatocyte nuclear factor-1alpha in Hnf1alpha-null mutant beta-cells can activate silenced genes postnatally, whereas overexpression is deleterious. Diabetes 55, 2202–2211 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Luco, R.F., Maestro, M.A., Sadoni, N., Zink, D. & Ferrer, J. Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets. PLoS Genet. 4, e1000079 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ishihara, H. et al. Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36, 1139–1145 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Garcia for experimental support in rs7903146 functional studies, I. Moran for insights and help in the analysis of COREs, P. Maechler (Univ. Geneva Medical Center) for generously providing insulin release data, L. Piemonti and R. Nano (San Raffaele Scientific Institute), and M. Nacher (IDIBELL) for human islets. This work was supported by the European Union VI Framework Programme project Eurodia to J.F., Ministerio de Ciencia e Innovación (SAF2008-03116) to J.F., Juvenile Diabetes Research Foundation (26-2008-633 to J.F., 31-2008-416 to T.B., 6-2005-1178 and 31-2008-416 to A.S.), the US National Human Genome Research Institute Encyclopedia Of DNA Elements (NHGRI ENCODE) project (U54 HG004563 subcontract to J.D.L.) and R01 DK072193 (US National Institutes of Health) to K.L.M. K.L.M. is a Pew Scholar in the Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.F. and J.D.L. conceived the study. K.J.G., T.N., L.P., J.M.S., K.L.M., J.D.L. and J.F. designed the experiments, interpreted results and wrote the manuscript. T.N. conducted FAIRE experiments, and developed and performed allelic imbalance assays. P.G.G. optimized the FAIRE protocol and performed microarray studies. K.J.G., J.M.S., and P.G.G. performed sequence analysis and K.J.G., L.P., T.N. and J.M.S. performed data analysis. L.P. conducted the analysis of COREs. M.P.F. and T.M.P. conducted reporter assays. P.M. conducted high-throughput sequencing. A.S., D.B., T.B. and E.M. provided purified human islet samples.

Corresponding authors

Correspondence to Karen L Mohlke, Jason D Lieb or Jorge Ferrer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–9. (PDF 3941 kb)

Supplementary Table 2

RefSeq transcripts with preferential islet FAIRE enrichment (XLS 201 kb)

Supplementary Table 4

Over- and under-represented transcription factor binding motifs in intergenic islet FAIRE sites (XLS 57 kb)

Supplementary Table 5

Islet-selective Clusters of Open Regulatory Elements (COREs) (XLS 552 kb)

Supplementary Table 7

Islet-selective CORES that extend > 2 kb from the transcription start or termination site of overlapping genes (XLS 92 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaulton, K., Nammo, T., Pasquali, L. et al. A map of open chromatin in human pancreatic islets. Nat Genet 42, 255–259 (2010). https://doi.org/10.1038/ng.530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing