Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33

Abstract

We conducted a genome-wide association study of pancreatic cancer in 3,851 affected individuals (cases) and 3,934 unaffected controls drawn from 12 prospective cohort studies and 8 case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P = 3.27 × 10−11, per-allele odds ratio (OR) 1.26, 95% CI 1.18–1.35) and rs9564966 (P = 5.86 × 10−8, per-allele OR 1.21, 95% CI 1.13–1.30), map to a nongenic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2, and the strongest signal was at rs3790844 (P = 2.45 × 10−10, per-allele OR 0.77, 95% CI 0.71–0.84). A single SNP, rs401681 (P = 3.66 × 10−7, per-allele OR 1.19, 95% CI 1.11–1.27), maps to the CLPTM1L-TERT locus on 5p15.33, which is associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association results, recombination and linkage disequilibrium plots for 13q22.1, 1q32.1 and 5p15.33.

Similar content being viewed by others

References

  1. Ferlay, J., Bray, F., Pisani, P. & Parkin, D.M. GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide. IARC CancerBase vol. 5 (IARCPress, Lyon, 2004).

  2. Anderson, K.E., Mack, T.M. & Silverman, D. Cancer of the pancreas. in Cancer Epidemiology and Prevention (ed. Schottenfeld, D. & Fraumeni, J.J.) 721–762 (Oxford University Press, New York, (2006)).

  3. Shi, C., Hruban, R.H. & Klein, A.P. Familial pancreatic cancer. Arch. Pathol. Lab. Med. 133, 365–374 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Jones, S. et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324, 217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tischkowitz, M.D. et al. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137, 1183–1186 (2009).

    Article  PubMed  Google Scholar 

  6. Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  8. Li, Y., Sung, W.K. & Liu, J.J. Association mapping via regularized regression analysis of single-nucleotide-polymorphism haplotypes in variable-sized sliding windows. Am. J. Hum. Genet. 80, 705–715 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, Z. & Schaid, D.J. Sequential haplotype scan methods for association analysis. Genet. Epidemiol. 31, 553–564 (2007).

    Article  PubMed  Google Scholar 

  10. Dong, J.T. & Chen, C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell. Mol. Life Sci. 66, 2691–2706 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura, Y. et al. Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int. J. Cancer 125, 1859–1867 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, C. et al. Defining a common region of deletion at 13q21 in human cancers. Genes Chromosom. Cancer 31, 333–344 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Baudis, M. & Cleary, M.L. Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17, 1228–1229 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kainu, T. et al. Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc. Natl. Acad. Sci. USA 97, 9603–9608 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paré, J.F. et al. The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J. Biol. Chem. 279, 21206–21216 (2004).

    Article  PubMed  Google Scholar 

  16. Lee, Y.K. & Moore, D.D. Liver receptor homolog-1, an emerging metabolic modulator. Front. Biosci. 13, 5950–5958 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Botrugno, O.A. et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol. Cell 15, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto, K., Okamoto, A., Isonishi, S., Ochiai, K. & Ohtake, Y. A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis. Biochem. Biophys. Res. Commun. 280, 1148–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hahn, W.C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 40, 1407–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKay, J.D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40, 1404–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rafnar, T. et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat. Genet. 41, 221–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stacey, S.N. et al. New common variants affecting susceptibility to basal cell carcinoma. Nat. Genet. 41, 909–914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet. 41, 899–904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landi, M.T. et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zienolddiny, S. et al. The TERT-CLPTM1L lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis 30, 1368–1371 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Calado, R.T. et al. Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 106, 1187–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Savage, S.A. & Alter, B.P. Dyskeratosis congenita. Hematol. Oncol. Clin. North Am. 23, 215–231 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352, 1413–1424 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Calle, E.E. et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94, 2490–2501 (2002).

    Article  PubMed  Google Scholar 

  33. The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann. Epidemiol. 4, 1–10 (1994).

  34. Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Gallicchio, L. et al. Single nucleotide polymorphisms in inflammation-related genes and mortality in a community-based cohort in Washington County, Maryland. Am. J. Epidemiol. 167, 807–813 (2008).

    Article  PubMed  Google Scholar 

  36. Wolpin, B.M. et al. Circulating insulin-like growth factor binding protein-1 and the risk of pancreatic cancer. Cancer Res. 67, 7923–7928 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zeleniuch-Jacquotte, A. et al. Postmenopausal levels of sex hormones and risk of breast carcinoma in situ: results of a prospective study. Int. J. Cancer 114, 323–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Hayes, R.B. et al. Methods for etiologic and early marker investigations in the PLCO trial. Mutat. Res. 592, 147–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Anderson, G.L. et al. Implementation of the Women's Health Initiative study design. Ann. Epidemiol. 13, S5–S17 (2003).

    Article  PubMed  Google Scholar 

  40. Rexrode, K.M., Lee, I.M., Cook, N.R., Hennekens, C.H. & Buring, J.E. Baseline characteristics of participants in the Women's Health Study. J. Womens Health Gend. Based Med. 9, 19–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Eppel, A., Cotterchio, M. & Gallinger, S. Allergies are associated with reduced pancreas cancer risk: a population-based case-control study in Ontario, Canada. Int. J. Cancer 121, 2241–2245 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Duell, E.J. et al. Detecting pathway-based gene-gene and gene-environment interactions in pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 17, 1470–1479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hassan, M.M. et al. Risk factors for pancreatic cancer: case-control study. Am. J. Gastroenterol. 102, 2696–2707 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olson, S.H. et al. Allergies, variants in IL-4 and IL-4R alpha genes, and risk of pancreatic cancer. Cancer Detect. Prev. 31, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Risch, H.A. Etiology of pancreatic cancer, with a hypothesis concerning the role of N-nitroso compounds and excess gastric acidity. J. Natl. Cancer Inst. 95, 948–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. McWilliams, R.R. et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res. 68, 4928–4935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wigginton, J.E., Cutler, D.J. & Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, K. et al. Population substructure and control selection in genome-wide association studies. PLoS One 3, e2551 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun, L., Wilder, K. & McPeek, M.S. Enhanced pedigree error detection. Hum. Hered. 54, 99–110 (2002).

    Article  PubMed  Google Scholar 

  57. Clayton, D. Testing for association on the X chromosome. Biostatistics 9, 593–600 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lettre, G., Lange, C. & Hirschhorn, J.N. Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet. Epidemiol. 31, 358–362 (2007).

    Article  PubMed  Google Scholar 

  59. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  60. Fearnhead, P. SequenceLDhot: detecting recombination hotspots. Bioinformatics 22, 3061–3066 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Fearnhead, P., Harding, R.M, Schneider, J.A, Myers, S. & Donnelly, P. Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167, 2067–2081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crawford, D.C. et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat. Genet. 36, 700–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Li, N.P. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the energy and contribution of our late colleague Sheila Bingham. Additional acknowledgments are in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

G.M.P., L.A., C.S.F., P.K., R.Z.S.-S., K.B.J., S.M.L., J.B.M., G.S.T., R.N.H., P.H. and S.J.C. organized and designed the study. L.A., A.H., K.B.J., G.T. and S.J.C. supervised genotyping of samples. L.A., P.K., R.Z.S.-S., C.S.F., K.B.J., C.K., H.P., Z.W., K.Y., R.N.H., P.H. and S.J.C. contributed to the design and execution of statistical analysis. L.A., G.M.P., P.K., R.Z.S.-S., R.N.H., P.H. and S.J.C. wrote the first draft of the manuscript. G.M.P., C.S.F., R.Z.S.-S., A.A.A., H.B.B., S.G., M.G., K.H., E.A.H., E.J.J., A.P.K., A.L., D.L., M.T.M., S.H.O., H.A.R., W.Z., D.A., W.R.B., C.D.B., M.-C.B.-R., J.E.B., P.M.B., F.C., S.C., M.C., M.deA., E.J.D., J.M.G., E.L.G., M.G., G.H., S.E.H., M.H., B.H., D.J.H., M.J., R.K., V.K., R.C.K., R.R.M., D.S.M., A.V.P., P.H.M.P., A.R., E.R., L.R., X.-O.S., A.T., D.T., S.K.V.D.E., J.V., J.W.-W., B.M.W., H.Y., A.Z.-J. and J.F.F.Jr. conducted the epidemiologic studies and contributed samples to the PanScan GWAS and/or replication. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Stephen J Chanock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Note (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, G., Amundadottir, L., Fuchs, C. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42, 224–228 (2010). https://doi.org/10.1038/ng.522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.522

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer