Abstract
The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 × 10−8. At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Havlik, R.J., Garrison, R.J., Fabsitz, R. & Feinleib, M. Variability of heart rate, P-R, QRS and Q-T durations in twins. J. Electrocardiol. 13, 45–48 (1980).
Hanson, B. et al. Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am. J. Cardiol. 63, 606–609 (1989).
Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).
Newton-Cheh, C. et al. Genome wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med. Genet. 8, S7 (2007).
Benjamin, E.J. et al. Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation 119, 606–618 (2009).
Heeringa, J. et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27, 949–953 (2006).
Fox, C.S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. J. Am. Med. Assoc. 291, 2851–2855 (2004).
Gudbjartsson, D.F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448, 353–357 (2007).
Benjamin, E.J. et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat. Genet. 41, 879–881 (2009).
Sinner, M.F. et al. The non-synonymous coding IKr-channel variant KCNH2–K897T is associated with atrial fibrillation: results from a systematic candidate gene-based analysis of KCNH2 (HERG). Eur. Heart J. 29, 907–914 (2008).
Olsson, S.B., Cotoi, S. & Varnauskas, E. Monophasic action potential and sinus rhythm stability after conversion of atrial fibrillation. Acta Med. Scand. 190, 381–387 (1971).
Soliman, E.Z., Prineas, R.J., Case, L.D., Zhang, Z.M. & Goff, D.C. Jr. Ethnic distribution of ECG predictors of atrial fibrillation and its impact on understanding the ethnic distribution of ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 40, 1204–1211 (2009).
Cheng, S. et al. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. J. Am. Med. Assoc. 301, 2571–2577 (2009).
Schnabel, R.B. et al. Development of a risk score for atrial fibrillation (the Framingham Heart Study): a community-based cohort study. Lancet 373, 739–745 (2009).
Harris, T.B. et al. Age, Gene/Environment Susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165, 1076–1087 (2007).
ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. Am. J. Epidemiol. 129, 687–702 (1989).
Fried, L.P. et al. The Cardiovascular Health Study: design and rationale. Ann. Epidemiol. 1, 263–276 (1991).
Splansky, G.L. et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007).
Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen–resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67, S26–S30 (2005).
Hofman, A. et al. The Rotterdam Study: objectives and design update. Eur. J. Epidemiol. 22, 819–829 (2007).
The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
Nothnagel, M., Ellinghaus, D., Schreiber, S., Krawczak, M. & Franke, A. A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125, 163–171 (2009).
Chung, M.K. et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104, 2886–2891 (2001).
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
Zimmermann, K. et al. Sensory neuron sodium channel NaV1.8 is essential for pain at low temperatures. Nature 447, 855–858 (2007).
Rabert, D.K. et al. A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hPN3/SCN10A. Pain 78, 107–114 (1998).
Remme, C.A., Wilde, A.A. & Bezzina, C.R. Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations. Trends Cardiovasc. Med. 18, 78–87 (2008).
Newton-Cheh, C. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).
Pfeufer, A. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414 (2009).
Jay, P.Y. et al. Function follows form: cardiac conduction system defects in Nkx2-5 mutation. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 280, 966–972 (2004).
Mesbah, K., Harrelson, Z., Théveniau-Ruissy, M., Papaioannou, V.E. & Kelly, R.G. Tbx3 is required for outflow tract development. Circ. Res. 103, 743–750 (2008).
Moskowitz, I.P. et al. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129, 1365–1376 (2007).
Mori, A.D. et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev. Biol. 297, 566–586 (2006).
Postma, A.V. et al. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ. Res. 102, 1433–1442 (2008).
Hoogaars, W.M. et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21, 1098–1112 (2007).
Schinzel, A. Ulnar-mammary syndrome. J. Med. Genet. 24, 778–781 (1987).
Gratton, J.P., Bernatchez, P. & Sessa, W.C. Caveolae and caveolins in the cardiovascular system. Circ. Res. 94, 1408–1417 (2004).
Zhao, Y.Y. et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl. Acad. Sci. USA 99, 11375–11380 (2002).
Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).
Stankunas, K. et al. Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ. Res. 103, 702–709 (2008).
Pandur, P., Läsche, M., Eisenberg, L.M. & Kühl, M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–641 (2002).
Su, Z.J. et al. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 101, 12212–12217 (2004).
Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).
Willems, J.L. et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N. Engl. J. Med. 325, 1767–1773 (1991).
Perz, S., et al. & for the KORA Study Group Does computerized ECG analysis provide sufficiently consistent QT interval estimates for genetic research? in Analysis of Biomedical Signals and Images (eds. Jan, J., Kozumplik, J. & Provaznik, I.) 47–49 (Vutium, Brno, Czech Republic, 2004).
Arking, D.E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).
van Bemmel, J.H., Kors, J.A. & van Herpen, G. Methodology of the modular ECG analysis system MEANS. Methods Inf. Med. 29, 346–353 (1990).
Rabbee, N. & Speed, T.P. A genotype calling algorithm for Affymetrix SNP arrays. Bioinformatics 22, 7–12 (2006).
Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).
Servin, B. & Stephens, M. Imputation based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).
Chen, W.M. & Abecasis, G. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).
Acknowledgements
We gratefully acknowledge all of the participants in the studies. AGES: US National Institutes of Health (NIH) N01-AG-12100, US National Institute on Aging (NIA) and NIH Intramural Research Programs, Hjartavernd (Icelandic Heart Association), Althingi (Icelandic parliament), US National Heart, Lung, and Blood Institute (NHLBI), US National Eye Institute and US National Institute on Deafness and Other Communication Disorders. ARIC: NHLBI N01-HC-55015, N01-HC-55016, N01-HC-55018 through N01-HC-55022, R01-HL-087641, R01-HL-59367, R01-HL-086694 and R01-HL-054512; US National Human Genome Research Institute (NHGRI) U01-HG004402; NIH HHSN268200625226C; and the Donald W. Reynolds Cardiovascular Clinical Research Center. Infrastructure was supported by NIH UL1-RR025005. CCAF: NHLBI R01-HL090620 and P50-HL077107, and intramural funding from the Heart and Vascular Institute, Department of Cardiovascular Medicine, Cleveland Clinic. CHS: NHLBI N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01-HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-45133, U01-HL-080295, R01-HL-087652 and R01-HL-088456; US National Center for Research Resources M01-RR-00425; National Institute of Diabetes and Digestive and Kidney Diseases DK063491; US National Institute of Neurological Disorders and Stroke; and the Cedars-Sinai Board of Governors. FHS: NIH N01-HC-25195, HL-076784, AG-028321, N01-HC25195, HL-080025 and 6R01-NS-17950; NHLBI N01-HC-25195; Boston University School of Medicine and Boston Medical Center (LINGA-II); the Robert Dawson Evans Endowment; the Doris Duke Charitable Foundation; the SHARe project; Deutsche Forschungsgemeinschaft fellowship SCHN 1149/1-1; Affymetrix contract for genotyping services (N02-HL-6-4278); and Pfizer. KORA/AFNET: We thank B. Pütz, M. Putz and G. Fischer for their contributions to genotyping and imputation. Bundesministerium für Bildung und Forschung Nationales Genomforschungsnetz; 01-GS-0499, 01-GR-0103, 01-GR-0803, AFNET 01-GI-0204 01-GS-0838, the Leducq Foundation 07-CVD 03, Ludwig-Maximilians University (LMU) FöFoLe 557/569, the LMU Excellence Initiative, MC Health as part of LMUinnovativ, the Helmholtz Zentrum München für Gesundheit und Umwelt and the state of Bavaria. Rotterdam Study: We thank P. Arp, M. Jhamai, M. Moorhouse, M. Verkerk and S. Bervoets for their help in creating the database, K. Estrada for his help with the analyses and M. Struchalin for contributions to genotype imputation. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (The Netherlands Organisation for Scientific Research) 175.010.2005.011, 911.03.012 and 050-060-810, the Research Institute of Diseases in the Elderly, Netherlands Genome Initiative, Stichting Zorgonderzoek Nederland-Medische Wetenschappen (The Netherlands Organisation for Health Research and Development), Netherlands Hartstichting, Netherlands Ministry of Education Culture and Science, Netherlands Ministry of Health Welfare and Sports; the European Commission; Erasmus Medical Center, Erasmus University Rotterdam and the municipality of Rotterdam. SardiNIA: We thank A. Scuteri and M. Orrù for longstanding, continual support of the project and for phenotype characterization. NIA NO1-AG-1-2109, 263-MA-410953, NIH and NIA Intramural Research Programs, NHGRI and NHLBI. Role of the sponsors: None of the funding organizations had any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; or preparation, review or approval of the manuscript. More detailed acknowledgments can be found in the Supplementary Note.
Author information
Authors and Affiliations
Contributions
Study concept and design: A.P., D.E.A., A.V.S., N.S., J.I.R., A.H., B.H.C.S., C.M.v.D., G.E., A.C., K.L.L., V.G., P.T.E., S.S., S.K., J.C.M.W., E.J.B., S.R.H. Acquisition of data: A.P., C.v.N., D.E.A., K.V.T., M.F.S., J.I.R., F.R., J.A.K., B.H.C.S., A.G.U., B.M.B., W.S., C.G., C.N.-C., T.J.W., M.K.C., J.D.S., D.R.V.W., S.S.N., G.B.E., A.C., E.Z.S., S.P., J.C.M.W., A.A., S.R.H. Analysis and interpretation of data: A.P., C.v.N., K.D.M., D.E.A., A.V.S., M.M., N.S., G.C.V., M.L., J.I.R., C.N.-C., T.J.W., R.S.V., T.A., S.S.N., G.B.E., A.C., E.Z.S., K.L.L., S.P., V.G., E.J.B., S.R.H. Drafting the manuscript: A.P., D.E.A., N.S., P.T.E., S.K., E.J.B., S.R.H. Critical revision of the manuscript: C.v.N., K.D.M., M.G.L., A.V.S., K.V.T., M.M., M.F.S., G.C.V., W.H.L.K., A.K., J.C., J.C.B., B.M.P., K.R., J.I.R., F.R., A.H., J.A.K., B.H.C.S., A.G.U., C.M.v.D., B.M.B., C.G., S.A.L., C.N.-C., T.J.W., J.W.M., R.B.S., M.K.C., J.B., J.D.S., D.R.V.W., R.S.V., G.E., L.J.L., T.B.H., E.L., D.S., M.U., G.R.A., B.M.-M., E.B., E.Z.S., K.L.L., H.-E.W., T.M., D.L., V.G., S.S., J.C.M.W., A.A. Statistical analysis: A.P., C.v.N., D.E.A., M.G.L., A.V.S., M.M., G.C.V., M.L., W.H.L.K., J.C.B., K.R., T.A., K.L.L. Obtaining funding: A.P., M.F.S., B.M.P., J.I.R., F.R., A.H., A.G.U., M.K.C., J.D.S., R.S.V., G.E., D.S., M.U., G.R.A., E.B., A.C., H.-E.W., T.M., D.L., V.G., J.C.M.W., S.R.H. Study supervision: J.I.R., F.R., A.H., B.H.C.S., A.G.U., C.M.v.D., G.E., A.C., V.G., J.C.M.W., S.R.H. The following authors had full data access and take responsibility for analysis: A.P., C.v.N., M.M., J.I.R., A.C., K.L.L, S.R.H. Cohort study investigators: a list of investigators by cohort study may be found in the Supplementary Note.
Corresponding authors
Ethics declarations
Competing interests
A.C. is a paid member of the scientific advisory board of Affymetrix, a role that is managed by the Committee on Conflict of Interest of the Johns Hopkins University School of Medicine.
Supplementary information
Supplementary Text and Figures
Supplementary Tables 1–4 and Supplementary Note (PDF 345 kb)
Rights and permissions
About this article
Cite this article
Pfeufer, A., van Noord, C., Marciante, K. et al. Genome-wide association study of PR interval. Nat Genet 42, 153–159 (2010). https://doi.org/10.1038/ng.517
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.517
This article is cited by
-
Association of T66A polymorphism in CASQ2 with PR interval in a Chinese population
Herz (2021)
-
Genome-first approach to rare EYA4 variants and cardio-auditory phenotypes in adults
Human Genetics (2021)
-
Potential causal association of a prolonged PR interval and clinical recurrence of atrial fibrillation after catheter ablation: a Mendelian randomization analysis
Journal of Human Genetics (2020)
-
Inhibition of NaV1.8 prevents atrial arrhythmogenesis in human and mice
Basic Research in Cardiology (2020)
-
Prevalence of first-degree atrioventricular block and the associated risk factors: a cross-sectional study in rural Northeast China
BMC Cardiovascular Disorders (2019)