Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C

Abstract

Charcot-Marie-Tooth disease type 2C (CMT2C) is an autosomal dominant neuropathy characterized by limb, diaphragm and laryngeal muscle weakness. Two unrelated families with CMT2C showed significant linkage to chromosome 12q24.11. We sequenced all genes in this region and identified two heterozygous missense mutations in the TRPV4 gene, C805T and G806A, resulting in the amino acid substitutions R269C and R269H. TRPV4 is a well-known member of the TRP superfamily of cation channels. In TRPV4-transfected cells, the CMT2C mutations caused marked cellular toxicity and increased constitutive and activated channel currents. Mutations in TRPV4 were previously associated with skeletal dysplasias. Our findings indicate that TRPV4 mutations can also cause a degenerative disorder of the peripheral nerves. The CMT2C-associated mutations lie in a distinct region of the TRPV4 ankyrin repeats, suggesting that this phenotypic variability may be due to differential effects on regulatory protein-protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic and genetic characteristics of CMT2C.
Figure 2: Mutant TRPV4 causes neuronal toxicity.
Figure 3: The R269C and R269H substitutions cause increased TRPV4 currents without a change in membrane localization.
Figure 4: The R269C and R269H substitutions are located in the ankyrin repeat domain (ARD) of the TRPV4 protein.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Skre, H. Genetic and clinical aspects of Charcot-Marie-Tooth's disease. Clin. Genet. 6, 98–118 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Dyck, P.J. et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann. Neurol. 35, 608–615 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Santoro, L. et al. Charcot-Marie-Tooth disease type 2C: a distinct genetic entity. Clinical and molecular characterization of the first European family. Neuromuscul. Disord. 12, 399–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. McEntagart, M.E. et al. Confirmation of a hereditary motor and sensory neuropathy IIC locus at chromosome 12q23–q24. Ann. Neurol. 57, 293–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Klein, C.J. et al. The gene for HMSN2C maps to 12q23–24: a region of neuromuscular disorders. Neurology 60, 1151–1156 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Rock, M.J. et al. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40, 999–1003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krakow, D. et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am. J. Hum. Genet. 84, 307–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Arniges, M., Fernandez-Fernandez, J.M., Albrecht, N., Schaefer, M. & Valverde, M.A. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J. Biol. Chem. 281, 1580–1586 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Vincent, F. et al. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun. 389, 490–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Voets, T. et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 277, 33704–33710 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39, 497–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Güler, A.D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Watanabe, H. et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277, 13569–13577 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA 101, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Everaerts, W., Nilius, B. & Owsianik, G. The vallinoid transient receptor potential channel Trpv4: from structure to disease. Prog. Biophys. Mol. Biol. published online doi:10.1016/j.pbiomolbio.2009.10.002 (14 October 2009).

  20. Liedtke, W. Molecular mechanisms of TRPV4-mediated neural signaling. Ann. NY Acad. Sci. 1144, 42–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Phelps, C.B., Wang, R.R., Choo, S.S. & Gaudet, R. Differential regulation of TRPV1, TRPV3 and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J. Biol. Chem. published online, doi:10.1074/jbc.M109.052548 (28 October 2009).

  22. Jin, X., Touhey, J. & Gaudet, R. Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J. Biol. Chem. 281, 25006–25010 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lishko, P.V., Procko, E., Jin, X., Phelps, C.B. & Gaudet, R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54, 905–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Phelps, C.B., Huang, R.J., Lishko, P.V., Wang, R.R. & Gaudet, R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 2476–2484 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Cuajungco, M.P. et al. PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J. Biol. Chem. 281, 18753–18762 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Mattson, M.P. Calcium and neurodegeneration. Aging Cell 6, 337–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Tabuchi, K., Suzuki, M., Mizuno, A. & Hara, A. Hearing impairment in TRPV4 knockout mice. Neurosci. Lett. 382, 304–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark, K., Middelbeek, J. & van Leeuwen, F.N. Interplay between TRP channels and the cytoskeleton in health and disease. Eur. J. Cell Biol. 87, 631–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Becker, E.B. et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc. Natl. Acad. Sci. USA 106, 6706–6711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sobel, E., Sengul, H. & Weeks, D.E. Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum. Hered. 52, 121–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Avila, A.M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, W., Mi, R., Haughey, N., Oz, M. & Hoke, A. Immortalization and characterization of a nociceptive dorsal root ganglion sensory neuronal line. J. Peripher. Nerv. Syst. 12, 121–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr D Biol Crystallogr 56, 1622–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot. Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the subjects and their families for participating in this study. We thank J. Kissel for discussions regarding clinical evaluation of family 1, A. LaPean for aid in subject characterization, M. K. Floeter and T. Lehky for performing neurophysiological studies, R. R. Wang for crystallization and X-ray data collection, J. Hardy for helpful discussion regarding genetic analysis, A. Singleton and D. Hernandez for help with SNP array analysis, the NINDS DNA sequencing facility for help with sequencing, the Maryland Brain and Tissue Bank for providing human spinal cord and tracheal tissues, M. Suzuki for Trpv4 knockout mice, R. Tsien for providing the fluorescent protein mCherry, A. Hoke for providing DRG cells, J. Griffin for aid in nerve pathology evaluation, S. Heller for providing antibody to TRPV4, T. Jentsch for cells and instruments, C. Rojas and J. Alt for help with FLIPR, S. Minogue for assistance in confocal imaging, M.A. Valverde for providing human TRPV4 expression constructs and M. Plomann for providing PACSIN expression constructs and antibodies. This work was supported by intramural funds from the NINDS at NIH, funds from the Johns Hopkins Department of Neurology and the David and Elaine Potter Charitable Foundation, and NIH grant R01GM081340 and a McKnight Scholar Award to R.G.

Author information

Authors and Affiliations

Authors

Contributions

C.J.S., K.H.F. and R.K. directed the study, and C.J.S wrote the paper. C.J.S., K.H.F., C.L.L., H.H. and G.L. evaluated subjects. R.K., H.C.S., K.H.F. and G.L. did the genetic analysis, and Y.S., A.A.T., R.P., R.K., K.H.F and G.L. carried out the gene sequencing. B.G.B., T.L.M., L.K. and C.J.S. performed qRT-PCR, IHC, cell death assays and co-IP experiments. A.A.Z. completed cell surface biotinylation and electrophysiology in Xenopus oocytes. H.I. and R.G. did electrophysiology in HEK cells and protein-binding assays. Protein structure determination was done by R.G., S.S.C. and C.B.P. Cell calcium imaging was completed by C.H.M. and M.J.C.

Corresponding author

Correspondence to Charlotte J Sumner.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–7 (PDF 909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landouré, G., Zdebik, A., Martinez, T. et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42, 170–174 (2010). https://doi.org/10.1038/ng.512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing