Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium

Abstract

Measurements of erythrocytes within the blood are important clinical traits and can indicate various hematological disorders. We report here genome-wide association studies (GWAS) for six erythrocyte traits, including hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red blood cell count (RBC). We performed an initial GWAS in cohorts of the CHARGE Consortium totaling 24,167 individuals of European ancestry and replication in additional independent cohorts of the HaemGen Consortium totaling 9,456 individuals. We identified 23 loci significantly associated with these traits in a meta-analysis of the discovery and replication cohorts (combined P values ranging from 5 × 10−8 to 7 × 10−86). Our findings include loci previously associated with these traits (HBS1L-MYB, HFE, TMPRSS6, TFR2, SPTA1) as well as new associations (EPO, TFRC, SH2B3 and 15 other loci). This study has identified new determinants of erythrocyte traits, offering insight into common variants underlying variation in erythrocyte measures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of CHARGE meta-analysis results for six erythrocyte traits: hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV) and erythrocyte count (RBC).
Figure 2
Figure 3: Gene expression in blood and endothelial cells for genes in the chromosome 6q23.3 region.

References

  1. 1

    Havlik, R.J. et al. Evidence for additional blood pressure correlates in adults 20–56 years old. Circulation 61, 710–715 (1980).

    CAS  Article  Google Scholar 

  2. 2

    Tell, G.S. et al. Correlates of blood pressure in community-dwelling older adults. The Cardiovascular Health Study. Cardiovascular Health Study (CHS) Collaborative Research Group. Hypertension 23, 59–67 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Zakai, N.A. et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch. Intern. Med. 165, 2214–2220 (2005).

    Article  Google Scholar 

  4. 4

    Whitfield, J.B. & Martin, N.G. Genetic and environmental influences on the size and number of cells in the blood. Genet. Epidemiol. 2, 133–144 (1985).

    CAS  Article  Google Scholar 

  5. 5

    Evans, D.M., Frazer, I.H. & Martin, N.G. Genetic and environmental causes of variation in basal levels of blood cells. Twin Res. 2, 250–257 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Lin, J.P. et al. Evidence for linkage of red blood cell size and count: genome-wide scans in the Framingham Heart Study. Am. J. Hematol. 82, 605–610 (2007).

    CAS  Article  Google Scholar 

  7. 7

    McLaren, C.E. et al. Determinants and characteristics of mean corpuscular volume and hemoglobin concentration in white HFE C282Y homozygotes in the hemochromatosis and iron overload screening study. Am. J. Hematol. 82, 898–905 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Zeng, S.M., Yankowitz, J., Widness, J.A. & Strauss, R.G. Etiology of differences in hematocrit between males and females: sequence-based polymorphisms in erythropoietin and its receptor. J. Gend. Specif. Med. 4, 35–40 (2001).

    CAS  PubMed  Google Scholar 

  9. 9

    Zeng, S.M., Yankowitz, J., Widness, J.A. & Strauss, R.G. Sequence-based polymorphisms in members of the apoptosis Bcl-2 gene family and their association with hematocrit level. J. Gend. Specif. Med. 6, 36–42 (2003).

    PubMed  Google Scholar 

  10. 10

    Menzel, S. et al. The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood 110, 3624–3626 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Iliadou, A. et al. Genomewide scans of red cell indices suggest linkage on chromosome 6q23. J. Med. Genet. 44, 24–30 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Yang, Q., Kathiresan, S., Lin, J.P., Tofler, G.H. & O'Donnell, C.J. Genome-wide association and linkage analyses of hemostatic factors and hematological phenotypes in the Framingham Heart Study. BMC Med. Genet. 8 (Suppl. 1), S12 (2007).

    Article  Google Scholar 

  13. 13

    Lin, J.P., O'Donnell, C.J., Levy, D. & Cupples, L.A. Evidence for a gene influencing haematocrit on chromosome 6q23–24: genomewide scan in the Framingham Heart Study. J. Med. Genet. 42, 75–79 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Psaty, B.M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from five cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  Google Scholar 

  15. 15

    Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Agre, P., Casella, J.F., Zinkham, W.H., McMillan, C. & Bennett, V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. Nature 314, 380–383 (1985).

    CAS  Article  Google Scholar 

  17. 17

    Marchesi, S.L. et al. Mutant forms of spectrin alpha-subunits in hereditary elliptocytosis. J. Clin. Invest. 80, 191–198 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Feder, J.N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Roest, M. et al. Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular death in women. Circulation 100, 1268–1273 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Tuomainen, T.P. et al. Increased risk of acute myocardial infarction in carriers of the hemochromatosis gene Cys282Tyr mutation: a prospective cohort study in men in eastern Finland. Circulation 100, 1274–1279 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Vecchi, C. et al. ER stress controls iron metabolism through induction of hepcidin. Science 325, 877–880 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Swinkels, D.W. & Wetzels, J.F. Hepcidin: a new tool in the management of anaemia in patients with chronic kidney disease? Nephrol. Dial. Transplant. 23, 2450–2453 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Roy, C.N. et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 109, 4038–4044 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Feder, J.N. et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc. Natl. Acad. Sci. USA 95, 1472–1477 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Finberg, K.E. et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Kerenyi, M.A. et al. Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood 112, 3878–3888 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Roetto, A. et al. Hemochromatosis due to mutations in transferrin receptor 2. Blood Cells Mol. Dis. 29, 465–470 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA 105, 1620–1625 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Menzel, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39, 1197–1199 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Bea, S. et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106, 3183–3190 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Sankaran, V.G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839–1842 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Higgs, D.R. & Wood, W.G. Genetic complexity in sickle cell disease. Proc. Natl. Acad. Sci. USA 105, 11595–11596 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Sandberg, M.L. et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev. Cell 8, 153–166 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Emambokus, N. et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40, 395–402 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Smyth, D.J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Velazquez, L. et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J. Exp. Med. 195, 1599–1611 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Saxton, T.M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Jongmans, M. et al. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Am. J. Med. Genet. A. 134A, 165–170 (2005).

    Article  Google Scholar 

  43. 43

    Kalidas, K. et al. Genetic heterogeneity in LEOPARD syndrome: two families with no mutations in PTPN11. J. Hum. Genet. 50, 21–25 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Tong, Z. et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc. Natl. Acad. Sci. USA 105, 6998–7003 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Wannamethee, G. & Shaper, A.G. Haematocrit: relationships with blood lipids, blood pressure and other cardiovascular risk factors. Thromb. Haemost. 72, 58–64 (1994).

    CAS  PubMed  Google Scholar 

  47. 47

    Gagnon, D.R., Zhang, T.J., Brand, F.N. & Kannel, W.B. Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up. Am. Heart J. 127, 674–682 (1994).

    CAS  Article  Google Scholar 

  48. 48

    Elwood, P.C., Waters, W.E., Benjamin, I.T. & Sweetnam, P.M. Mortality and anaemia in women. Lancet 1, 891–894 (1974).

    CAS  Article  Google Scholar 

  49. 49

    Sarnak, M.J. et al. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 40, 27–33 (2002).

    Article  Google Scholar 

  50. 50

    de Simone, G. et al. Association of blood pressure with blood viscosity in american indians: the Strong Heart Study. Hypertension 45, 625–630 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Letcher, R.L., Chien, S., Pickering, T.G. & Laragh, J.H. Elevated blood viscosity in patients with borderline essential hypertension. Hypertension 5, 757–762 (1983).

    CAS  Article  Google Scholar 

  52. 52

    Sharp, D.S. et al. Mean red cell volume as a correlate of blood pressure. Circulation 93, 1677–1684 (1996).

    CAS  Article  Google Scholar 

  53. 53

    Wells, R.E. Jr. & Merrill, E.W. Influence of flow properties of blood upon viscosity-hematocrit relationships. J. Clin. Invest. 41, 1591–1598 (1962).

    Article  Google Scholar 

  54. 54

    Ott, E.O., Lechner, H. & Aranibar, A. High blood viscosity syndrome in cerebral infarction. Stroke 5, 330–333 (1974).

    CAS  Article  Google Scholar 

  55. 55

    Gollob, M.H. et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 344, 1823–1831 (2001).

    CAS  Article  Google Scholar 

  56. 56

    Gollob, M.H. et al. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 104, 3030–3033 (2001).

    CAS  Article  Google Scholar 

  57. 57

    Beutler, E. & Waalen, J. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood 107, 1747–1750 (2006).

    CAS  Article  Google Scholar 

  58. 58

    Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

    Article  Google Scholar 

  59. 59

    Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  Article  Google Scholar 

  60. 60

    Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    CAS  Article  Google Scholar 

  61. 61

    Watkins, N.A. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113, e1–e9 (2009).

    CAS  Article  Google Scholar 

  62. 62

    da Costa Martins, P. et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler. Thromb. Vasc. Biol. 27, 1023–1029 (2007).

    CAS  Article  Google Scholar 

  63. 63

    Du, P., Kibbe, W.A. & Lin, S.M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Hamosh, A (ed.). Online Mendelian Inheritance in Man (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, Maryland, USA) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, Maryland, USA)). <http://www.ncbi.nlm.nih.gov/omim>.

  65. 65

    Becker, K.G., Barnes, K.C., Bright, T.J. & Wang, S.A. The genetic association database. Nat. Genet. 36, 431–432 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Complete study acknowledgments are listed in the Supplementary Note. The authors thank the studies' participants and staff and the funding agencies for their support.

Author information

Affiliations

Authors

Contributions

AGES: Study design and phenotype collection, T.B.H.,V.G., L.J.L., G.E.; data analysis, A.V.S., M.A.N., T.A.; manuscript preparation, M.A.N., N.S.; manuscript revisions, T.B.H.,V.G., L.J.L., A.V.S., A.B.S., D.G.H., M.A.N. ARIC: Study design and phenotype collection, E.B., J.C., S.F., A.C.; genotyping, E.B., A.C.; data analysis, S.K.G., A.K., A.C., A.G., G.B.E., A.J.; manuscript preparation, S.K.G., S.F.; manuscript revisions, S.K.G., A.C., E.B., J.C., A.K., S.F. CHS: Study design and phenotype collection, B.M.P., J.I.R., M.C., N.A.Z., N.L.G.; genotyping, J.I.R.; data analysis, N.L.G, T.L.; manuscript preparation, N.A.Z.; manuscript revisions, B.M.P., J.C.M.B., K.R., J.I.R., M.C., N.A.Z., N.L.G., T.L. FHS: Study design and phenotype collection, M.-H.C., Q.Y., C.S.F., D.L., L.A.C., C.J.O., J.-P.L.; data analysis, M.-H.C., Q.Y., J.-P.L., G.Z.; manuscript preparation, M.-H.C., C.J.O., J.-P.L.; manuscript revisions, M.-H.C., Q.Y., C.S.F., D.L., L.A.C., C.J.O., J.-P.L. Rotterdam: Study design and phenotype collection, F.J.A.v.R., A.H., A.G.U., B.A.O., C.M.v.D., J.C.M.W.; genotyping, A.G.U.; data analysis, F.J.A.v.R., J.F.F., A.D., G.C.V.; manuscript preparation, F.J.A.v.R., J.F.F., C.M.v.D.; manuscript revisions, F.J.A.v.R., J.F.F., A.D., G.C.V., A.H., A.G.U., B.A.O., C.M.v.D., J.C.M.W. InCHIANTI: Study design and phenotype collection, L.F., J.M.G., S.B.; data analysis, M.A.N., T.T.; manuscript preparation, M.A.N.; manuscript revisions, L.F., J.M.G., S.B., K.V.P., A.B.S., D.G.H., M.A.N., T.T. HaemGen: A.R., J.-J.Z., J.M.vG. Twins UK: Study design and phenotype collection, T.D.S., S.-L.T., P.D.; data analysis and manuscript preparation and revisions, N.S. UKBS1: Study design and phenotype collection, W.H.O., J.G.S.; data analysis, N.S.; manuscript preparation and revisions, N.S., A.R. KORA: Study design and phenotype collection, C.M., C.G.; data analysis, C.G., B.K.; manuscript preparation and revisions, C.G. SHIP: Study design and phenotype collection, M.N., A.G.; data analysis, A.T.; gene expression, A.R., J.-J.Z., J.M.vG.

Corresponding authors

Correspondence to Santhi K Ganesh or Christopher J O'Donnell.

Ethics declarations

Competing interests

A. Chakravarti is a paid member of the Scientific Advisory Boards of Affymetrix and Pyxis Genomics. These potential conflicts of interest are managed by the policies of Johns Hopkins University School of Medicine.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1, 2, 4 and 5, Supplementary Figures 1 and 2, and Supplementary Note (PDF 3493 kb)

Supplementary Table 3

All CHARGE meta analysis results. (XLS 288 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ganesh, S., Zakai, N., van Rooij, F. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat Genet 41, 1191–1198 (2009). https://doi.org/10.1038/ng.466

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing