Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies


Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events1. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly2 and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Missense mutations in the encoded enzymatic domain of INPP5E (inositol polyphate-5-phosphatase E) in individuals linked to the JBTS1 locus.
Figure 2: Impaired 5-phosphatase activity and altered ratio of PtdIns(4,5)P2 to PtdIns(4)P associated with JBTS1 INPP5E mutations.
Figure 3: Ciliary axonemal localization of INPP5E.
Figure 4: Effects of INPP5E mutations on ciliary stability.

Accession codes


NCBI Reference Sequence


  1. Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M.A. Phosphoinositides as regulators of membrane trafficking in health and disease. Cell. Mol. Life Sci. 65, 2833–2841 (2008).

    Article  CAS  Google Scholar 

  2. Valente, E.M., Brancati, F. & Dallapiccola, B. Genotypes and phenotypes of Joubert syndrome and related disorders. Eur. J. Med. Genet. 51, 1–23 (2008).

    Article  Google Scholar 

  3. Saar, K. et al. Homozygosity mapping in families with Joubert syndrome identifies a locus on chromosome 9q34.3 and evidence for genetic heterogeneity. Am. J. Hum. Genet. 65, 1666–1671 (1999).

    Article  CAS  Google Scholar 

  4. Valente, E.M. et al. Distinguishing the four genetic causes of Joubert syndrome-related disorders. Ann. Neurol. 57, 513–519 (2005).

    Article  Google Scholar 

  5. Tsujishita, Y., Guo, S., Stolz, L.E., York, J.D. & Hurley, J.H. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 105, 379–389 (2001).

    Article  CAS  Google Scholar 

  6. Kong, A.M. et al. Phosphatidylinositol 3-phosphate (PtdIns3P) is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol. Cell. Biol. 26, 6065–6081 (2006).

    Article  CAS  Google Scholar 

  7. Kisseleva, M.V., Cao, L. & Majerus, P.W. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J. Biol. Chem. 277, 6266–6272 (2002).

    Article  CAS  Google Scholar 

  8. Jiang, X.R. et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111–114 (1999).

    Article  CAS  Google Scholar 

  9. Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  Google Scholar 

  10. Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83, 170–179 (2008).

    Article  CAS  Google Scholar 

  11. Caspary, T., Larkins, C.E. & Anderson, K.V. The graded response to Sonic hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  12. Alieva, I.B., Gorgidze, L.A., Komarova, Y.A., Chernobelskaya, O.A. & Vorobjev, I.A. Experimental model for studying the primary cilia in tissue culture cells. Membr. Cell Biol. 12, 895–905 (1999).

    CAS  PubMed  Google Scholar 

  13. Higginbotham, H., Bielas, S., Tanaka, T. & Gleeson, J.G. Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res. 13, 155–164 (2004).

    Article  CAS  Google Scholar 

  14. Chizhikov, V.V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci. 27, 9780–9789 (2007).

    Article  CAS  Google Scholar 

  15. Tucker, R.W., Pardee, A.B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17, 527–535 (1979).

    Article  CAS  Google Scholar 

  16. De Donatis, A. et al. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis. J. Biol. Chem. 283, 19948–19956 (2008).

    Article  CAS  Google Scholar 

  17. Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    Article  CAS  Google Scholar 

  18. Pugacheva, E.N., Jablonski, S.A., Hartman, T.R., Henske, E.P. & Golemis, E.A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  Google Scholar 

  19. Santagata, S. et al. G-protein signaling through tubby proteins. Science 292, 2041–2050 (2001).

    Article  CAS  Google Scholar 

  20. Rohatgi, R. & Scott, M.P. Arrestin' movement in cilia. Science 320, 1726–1727 (2008).

    Article  CAS  Google Scholar 

  21. Valente, E.M. et al. AHI1 gene mutations cause specific forms of Joubert syndrome-related disorders. Ann. Neurol. 59, 527–534 (2006).

    Article  CAS  Google Scholar 

  22. Murray, S.S. et al. A highly informative SNP linkage panel for human genetic studies. Nat. Methods 1, 113–117 (2004).

    Article  CAS  Google Scholar 

  23. Hoffmann, K. & Lindner, T.H. easyLINKAGE-Plus—automated linkage analyses using large-scale SNP data. Bioinformatics 21, 3565–3567 (2005).

    Article  CAS  Google Scholar 

  24. Gleeson, J.G. et al. Genetic and neuroradiological heterogeneity of double cortex syndrome. Ann. Neurol. 47, 265–269 (2000).

    Article  CAS  Google Scholar 

  25. Valente, E.M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623–625 (2006).

    Article  CAS  Google Scholar 

  26. Inglis, P.N., Boroevich, K.A. & Leroux, M.R. Piecing together a ciliome. Trends Genet. 22, 491–500 (2006).

    Article  CAS  Google Scholar 

  27. Gherman, A., Davis, E.E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  28. Caldwell, K.K., Lips, D.L., Bansal, V.S. & Majerus, P.W. Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate. J. Biol. Chem. 266, 18378–18386 (1991).

    CAS  PubMed  Google Scholar 

  29. Vandeput, F., Backers, K., Villeret, V., Pesesse, X. & Erneux, C. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity. Cell. Signal. 18, 2193–2199 (2006).

    Article  CAS  Google Scholar 

  30. Zhang, X., Hartz, P.A., Philip, E., Racusen, L.C. & Majerus, P.W. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 1574–1582 (1998).

    Article  CAS  Google Scholar 

  31. Kisseleva, M.V., Wilson, M.P. & Majerus, P.W. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J. Biol. Chem. 275, 20110–20116 (2000).

    Article  CAS  Google Scholar 

  32. Rodriguez, L.G., Wu, X. & Guan, J.L. Wound-healing assay. Methods Mol. Biol. 294, 23–29 (2005).

    PubMed  Google Scholar 

  33. Kim, J., Krishnaswami, S.R. & Gleeson, J.G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796–3805 (2008).

    Article  CAS  Google Scholar 

Download references


We thank the Marshfield Clinic Research Foundation, Center for Inherited Disease Research and University of California Los Angeles Microarray Core (supported by the US National Heart, Lung, and Blood Institute and National Institutes of Health) for genotyping support. J. Meerloo at the University of California San Diego (UCSD) Neuroscience Microscopy Imaging Core (P30NS047101) provided imaging support. Ryan Anderson of the UCSD Material Sciences provided electron microscopy support. We thank members of the the Dixon lab (UCSD) for suggestions and help with protein modeling, and members of the Mitchell lab (Monash University) for reagents. This work was supported by the UCSD Neuroplasticity of Aging Training Grant (to S.L.B.), the Italian Ministry of Health (RC2008 to B.D., Ricerca Finalizzata 2006 to E.M.V.), the Telethon Foundation Italy (GGP08145 to E.B. and E.M.V.), National Institutes of Health grant HL 16634 (to P.W.M. and M.V.K.), American Heart Association grant 0730350N (to M.V.K.), the National Institute of Neurological Disorder and Stroke, the Burroughs Welcome Fund, the March of Dimes and the Howard Hughes Medical Institute (to J.G.G.).

Author information

Authors and Affiliations



S.L.B, J.L.S, F.B., L.C.S., L.T., S.G., M.J., S.S. and M.V.K. performed experiments. L.A.-G., L.S., M.S.Z, A.A.-A., O.R., H.K., D.S., L.C.S., E. Bertini, E. Boltshauser and E.F. identified and recruited patients. R.A.B. shared unpublished data and reagents. S.J.F., B.D. and P.W.M. provided advice and helped with data interpretation. S.L.B and J.L.S assembled the figures. S.L.B, E.M.V. and J.G.G. wrote and edited the manuscript.

Corresponding author

Correspondence to Joseph G Gleeson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–3 (PDF 1857 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bielas, S., Silhavy, J., Brancati, F. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41, 1032–1036 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing