Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in PYCR1 cause cutis laxa with progeroid features

An Author Correction to this article was published on 21 January 2022

This article has been updated

Abstract

Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation1,2,3. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic characteristics and genetic findings of subjects with PYCR1-related autosomal recessive cutis laxa with progeroid appearance.
Figure 2: Effect of PYCR1 mutations.
Figure 3: Loss of PYCR1 causes increased sensitivity to oxidative stress.
Figure 4: Phenotype of Pycr1 Xenopus morphants.
Figure 5: Skin hypoplasia in Pycr1 morphants is accompanied by spontaneous apoptosis and is independent of anemia.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

References

  1. Rajab, A. et al. Geroderma osteodysplasticum hereditaria and wrinkly skin syndrome in 22 patients from Oman. Am. J. Med. Genet. A 146A, 965–976 (2008).

    Article  Google Scholar 

  2. Morava, E. et al. Defining the phenotype in an autosomal recessive cutis laxa syndrome with a combined congenital defect of glycosylation. Eur. J. Hum. Genet. 16, 28–35 (2008).

    Article  CAS  Google Scholar 

  3. Guerra, D. et al. The De Barsy syndrome. J. Cutan. Pathol. 31, 616–624 (2004).

    Article  Google Scholar 

  4. Zhang, M.C. et al. Cutis laxa arising from frameshift mutations in exon 30 of the elastin gene (ELN). J. Biol. Chem. 274, 981–986 (1999).

    Article  CAS  Google Scholar 

  5. Al-Gazali, L.I., Sztriha, L., Skaff, F. & Haas, D. Gerodermia osteodysplastica and wrinkly skin syndrome: are they the same? Am. J. Med. Genet. 101, 213–220 (2001).

    Article  CAS  Google Scholar 

  6. Nanda, A. et al. Gerodermia osteodysplastica/wrinkly skin syndrome: report of three patients and brief review of the literature. Pediatr. Dermatol. 25, 66–71 (2008).

    Article  Google Scholar 

  7. Hamamy, H., Masri, A. & Ajlouni, K. Wrinkly skin syndrome. Clin. Exp. Dermatol. 30, 590–592 (2005).

    Article  CAS  Google Scholar 

  8. Sommer, A. Photo essay–geroderma osteodysplastica. Am. J. Med. Genet. C. Semin. Med. Genet. 145C, 291–292 (2007).

    Article  Google Scholar 

  9. Kunze, J. et al. De Barsy syndrome–an autosomal recessive, progeroid syndrome. Eur. J. Pediatr. 144, 348–354 (1985).

    Article  CAS  Google Scholar 

  10. Phang, J.M., Pandhare, J. & Liu, Y. The metabolism of proline as microenvironmental stress substrate. J. Nutr. 138, 2008S–2015S (2008).

    Article  CAS  Google Scholar 

  11. Hagedorn, C.H. & Phang, J.M. Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Arch. Biochem. Biophys. 225, 95–101 (1983).

    Article  CAS  Google Scholar 

  12. Meng, Z. et al. Crystal structure of human pyrroline-5-carboxylate reductase. J. Mol. Biol. 359, 1364–1377 (2006).

    Article  CAS  Google Scholar 

  13. Mitsubuchi, H., Nakamura, K., Matsumoto, S. & Endo, F. Inborn errors of proline metabolism. J. Nutr. 138, 2016S–2020S (2008).

    Article  CAS  Google Scholar 

  14. Baumgartner, M.R. et al. Delta1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur. J. Pediatr. 164, 31–36 (2005).

    Article  CAS  Google Scholar 

  15. Bicknell, L.S. et al. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur. J. Hum. Genet. 16, 1176–1186 (2008).

    Article  CAS  Google Scholar 

  16. Baumgartner, M.R. et al. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 9, 2853–2858 (2000).

    Article  CAS  Google Scholar 

  17. Van Maldergem, L. et al. Cobblestone-like brain dysgenesis and altered glycosylation in congenital cutis laxa, Debre type. Neurology 71, 1602–1608 (2008).

    Article  CAS  Google Scholar 

  18. Hennies, H.C. et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 40, 1410–1412 (2008).

    Article  CAS  Google Scholar 

  19. Kornak, U. et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat. Genet. 40, 32–34 (2008).

    Article  CAS  Google Scholar 

  20. Hucthagowder, V. et al. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion, and cell survival. Hum. Mol. Genet. 18, 2149–2165 (2009).

    Article  CAS  Google Scholar 

  21. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  22. Balaban, R.S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    Article  CAS  Google Scholar 

  23. D'Autreaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  CAS  Google Scholar 

  24. Krishnan, N., Dickman, M.B. & Becker, D.F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 44, 671–681 (2008).

    Article  CAS  Google Scholar 

  25. Knott, A.B., Perkins, G., Schwarzenbacher, R. & Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 9, 505–518 (2008).

    Article  CAS  Google Scholar 

  26. Lee, S. et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 282, 22977–22983 (2007).

    Article  CAS  Google Scholar 

  27. O'Connell, J.R. & Weeks, D.E. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am. J. Hum. Genet. 63, 259–266 (1998).

    Article  CAS  Google Scholar 

  28. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  29. Thiele, H. & Nurnberg, P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21, 1730–1732 (2005).

    Article  CAS  Google Scholar 

  30. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Duvezin-Caubet, S. et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. 281, 37972–37979 (2006).

    Article  CAS  Google Scholar 

  32. Teramoto, S. et al. Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn. J. Pharmacol. 79, 33–40 (1999).

    Article  CAS  Google Scholar 

  33. Hofhaus, G., Shakeley, R.M. & Attardi, G. Use of polarography to detect respiration defects in cell cultures. Methods Enzymol. 264, 476–483 (1996).

    Article  CAS  Google Scholar 

  34. Hensey, C. & Gautier, J. Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev. Biol. 203, 36–48 (1998).

    Article  CAS  Google Scholar 

  35. Sive, H., Grainger, R.M. & Harland, R.M. Early Development of Xenopus Laevis: A Laboratory Manual (Cold Spring Harbor Press, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

J. Common and B. Lane for advice and help with primary cultures. J. Gautier for TUNEL protocol. K. Rogers and S. Rogers for their help and advice on histology. This study was supported by the German Federal Ministry of Education and Research (BMBF) by grant 01GM0623 (SKELNET) to U.K. and S.M. and grants 01GM0880 and 01GM0801 to B.W., a grant from the Deutsche Forschungsgemeinschaft (Collaborative Research Centre 577) to U.K. and P.N., and by A*STAR and the Branco Weiss Foundation to B.R.

Author information

Authors and Affiliations

Authors

Contributions

B.R., N.E.-B., S.M. and U.K. designed the study. H.K., L.A.-G., M. Shahwan, B.R., F.B., S.F.N., A.M., F.A., D.G., P.F., A.N., A.R., D.M., M.G., J.N., A.G., A.S., R.S., A.R.J., E.S., D.S., B.D., S.R., H.H., B.W. and L.v.M. made clinical diagnoses and collected clinical data and samples. B.R., B.M., A.D., G.N., B.F., Y.L., B.B., P.N. and B.W. conducted genotyping and linkage analysis. H.L., B.O., B.M. and S.N. performed genomic loci capture. B.R., N.E.-B., A.D., B.F., D.K., S.C., M.S., P.-Y.T. performed immunoblotting, immunostaining, TUNEL, and proline level and FACS analysis. B.R., N.E.-B. and S.C. performed Xenopus work, ISH and Pycr1 constructs. U.K., B.F., M.S.-v.K. and P.S. performed zebrafish work. B.F., U.K. and M. Schuelke performed respiratory chain measurements. I.H. and G.Z. were responsible for ultrastructural and histological analysis of skin biopsies. B.R., N.E.-B., S.M. and U.K. wrote the manuscript.

Corresponding authors

Correspondence to Bruno Reversade or Stefan Mundlos.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–2 (PDF 3105 kb)

Supplementary Video 1

Movie of circulating red blood cells and beating heart in control tadpole at stage 30. (AVI 6648 kb)

Supplementary Video 2

Movie of beating heart in Pycr1 morphant tadpole at stage 30 despite absence of circulating red blood cells. (AVI 6648 kb)

Supplementary Video 3

Movie of shared blood circulation between Pycr1 morphant (top) and control tadpole (bottom) in parabiotic embryos at stage 45. (AVI 3715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reversade, B., Escande-Beillard, N., Dimopoulou, A. et al. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41, 1016–1021 (2009). https://doi.org/10.1038/ng.413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing