Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density

Abstract

Kidney stone disease is a common condition. To search for sequence variants conferring risk of kidney stones, we conducted a genome-wide association study in 3,773 cases and 42,510 controls from Iceland and The Netherlands. We discovered common, synonymous variants in the CLDN14 gene that associate with kidney stones (OR = 1.25 and P = 4.0 × 10−12 for rs219780[C]). Approximately 62% of the general population is homozygous for rs219780[C] and is estimated to have 1.64 times greater risk of developing the disease compared to noncarriers. The CLDN14 gene is expressed in the kidney and regulates paracellular permeability at epithelial tight junctions. The same variants were also found to associate with reduced bone mineral density at the hip (P = 0.00039) and spine (P = 0.0077).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The 21q22 locus.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. 1

    Coe, F.L., Evan, A. & Worcester, E. Kidney stone disease. J. Clin. Invest. 115, 2598–2608 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Trinchieri, A. et al. A prospective study of recurrence rate and risk factors for recurrence after a first renal stone. J. Urol. 162, 27–30 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Moe, O.W. Kidney stones: pathophysiology and medical management. Lancet 367, 333–344 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Hess, B., Hasler-Strub, U., Ackermann, D. & Jaeger, P. Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol. Dial. Transplant. 12, 1362–1368 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Tefekli, A. et al. Metabolic risk factors in pediatric and adult calcium oxalate urinary stone formers: is there any difference? Urol. Int. 70, 273–277 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Levy, F.L., Adams-Huet, B. & Pak, C.Y. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am. J. Med. 98, 50–59 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Edvardsson, V., Elidottir, H., Indridason, O.S. & Palsson, R. High incidence of kidney stones in Icelandic children. Pediatr. Nephrol. 20, 940–944 (2005).

    Article  Google Scholar 

  8. 8

    Stechman, M.J., Loh, N.Y. & Thakker, R.V. Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann. NY Acad. Sci. 1116, 461–484 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Polito, C., La Manna, A., Nappi, B., Villani, J. & Di Toro, R. Idiopathic hypercalciuria and hyperuricosuria: family prevalence of nephrolithiasis. Pediatr. Nephrol. 14, 1102–1104 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Goldfarb, D.S., Fischer, M.E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 67, 1053–1061 (2005).

    Article  Google Scholar 

  11. 11

    Angelow, S., Ahlstrom, R. & Yu, A.S. Biology of claudins. Am. J. Physiol. Renal Physiol. 295, F867–F876 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Wilcox, E.R. et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104, 165–172 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Wang, D., Johnson, A.D., Papp, A.C., Kroetz, D.L. & Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics 15, 693–704 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, H. et al. Association between two mu-opioid receptor gene (OPRM1) haplotype blocks and drug or alcohol dependence. Hum. Mol. Genet. 15, 807–819 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Asplin, J.R. et al. Bone mineral density and urine calcium excretion among subjects with and without nephrolithiasis. Kidney Int. 63, 662–669 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Kanis, J.A., Melton, L.J. III, Christiansen, C., Johnston, C.C. & Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Gudmundsdottir, S.L., Indridason, O.S., Franzson, L. & Sigurdsson, G. Age-related decline in bone mass measured by dual-energy X-ray absorptiometry and quantitative ultrasound in a population-based sample of both sexes: identification of useful ultrasound thresholds for osteoporosis screening. J. Clin. Densitom. 8, 80–86 (2005).

    Article  Google Scholar 

  20. 20

    Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Richards, J.B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nat. Genet. 41, 15–17 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Timpson, N.J. et al. Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum. Mol. Genet. 18, 1510–1517 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Uitterlinden, A.G. et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am. J. Hum. Genet. 75, 1032–1045 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Sims, A.M. et al. Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J. Bone Miner. Res. 23, 499–506 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Krause, G. et al. Structure and function of claudins. Biochim. Biophys. Acta 1778, 631–645 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Simon, D.B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Elkouby-Naor, L., Abassi, Z., Lagziel, A., Gow, A. & Ben-Yosef, T. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res. 333, 427–438 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Ben-Yosef, T. et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 12, 2049–2061 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Angelow, S., Kim, K.J. & Yu, A.S. Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J. Physiol. (Lond.) 571, 15–26 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Lemann, J. Jr, Bushinsky, D.A. & Hamm, L.L. Bone buffering of acid and base in humans. Am. J. Physiol. Renal Physiol. 285, F811–F832 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Wetzels, J.F., Kiemeney, L.A., Swinkels, D.W., Willems, H.L. & den Heijer, M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 72, 632–637 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Bagger, Y.Z. et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos. Int. 18, 505–512 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Kutyavin, I.V. et al. A novel endonuclease IV post-PCR genotyping system. Nucleic Acids Res. 34, e128 (2006).

    Article  Google Scholar 

  37. 37

    Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Rice, J.A. Mathematical Statistics and Data Analysis (Wadsworth, Belmont, California, 1995).

    Google Scholar 

  39. 39

    Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  Google Scholar 

  40. 40

    Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  Google Scholar 

  43. 43

    Uyguner, O. et al. Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clin. Genet. 64, 65–69 (2003).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The study was designed and results interpreted by G.T., H.H., G.B.W., V.E., O.S.I., R.P., M.B., K.K., U.S., T.R., U.T. and K.S. Statistical analysis was carried out by G.T., D.F.G., P.S., B.V.H. and A.K. V.E., O.S.I., R.P., G.S. and L.F. collected the Icelandic data. F.d.V., F.C.H.d'A., M.d.H. and L.A.K. collected the Dutch data. C.C. and P.A. collected the Danish data. Authors H.H., G.T., G.B.W., U.T. and K.S. wrote the first draft of the paper. All authors contributed to the final version.

Corresponding authors

Correspondence to Gudmar Thorleifsson or Kari Stefansson.

Ethics declarations

Competing interests

For the authors who are affiliated with deCODE genetics, we declare the following competing financial interests statement: some of the authors employed by deCODE genetics own stock or stock options in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Tables 1–8 (PDF 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thorleifsson, G., Holm, H., Edvardsson, V. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41, 926–930 (2009). https://doi.org/10.1038/ng.404

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing