Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci


We report the results of a meta-analysis of genome-wide association scans for multiple sclerosis (MS) susceptibility that includes 2,624 subjects with MS and 7,220 control subjects. Replication in an independent set of 2,215 subjects with MS and 2,116 control subjects validates new MS susceptibility loci at TNFRSF1A (combined P = 1.59 × 10−11), IRF8 (P = 3.73 × 10−9) and CD6 (P = 3.79 × 10−9). TNFRSF1A harbors two independent susceptibility alleles: rs1800693 is a common variant with modest effect (odds ratio = 1.2), whereas rs4149584 is a nonsynonymous coding polymorphism of low frequency but with stronger effect (allele frequency = 0.02; odds ratio = 1.6). We also report that the susceptibility allele near IRF8, which encodes a transcription factor known to function in type I interferon signaling, is associated with higher mRNA expression of interferon-response pathway genes in subjects with MS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Enrichment of associations in the replication stage that are consistent with the meta-analysis.
Figure 2: Three previously unidentified loci, TNFRSF1A, IRF8 and CD6, with genome-wide level of evidence of association to MS.
Figure 3: Interferon response genes are coordinately upregulated relative to the rs17445836[G] allele of IRF8.


  1. 1

    Hauser, S.L. & Oksenberg, J.R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52, 61–76 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Barcellos, L.F. et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum. Mol. Genet. 15, 2813–2824 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Yeo, T.W. et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann. Neurol. 61, 228–236 (2007).

    Article  Google Scholar 

  4. 4

    Hafler, D.A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357, 851–862 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Rubio, J.P. et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun. 9, 624–630 (2008).

    CAS  Article  Google Scholar 

  6. 6

    International Multiple Sclerosis Genetics Consortium. Refining genetic associations in multiple sclerosis. Lancet Neurol. 7, 567–569 (2008).

  7. 7

    Ramagopalan, S.V., Anderson, C., Sadovnick, A.D. & Ebers, G.C. Genomewide study of multiple sclerosis. N. Engl. J. Med. 357, 2199–2200 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Baranzini, S.E. et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum. Mol. Genet. 18, 767–778 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Li, Y. & Abecasis, G.R. Rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. S79, 2290 (2006).

    Google Scholar 

  11. 11

    de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Aulchenko, Y.S. et al. Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis. Nat. Genet. 40, 1402–1403 (2008).

    CAS  Article  Google Scholar 

  14. 14

    de Bakker, P.I. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    CAS  Article  Google Scholar 

  15. 15

    De Jager, P.L. et al. The role of the CD58 locus in multiple sclerosis. Proc. Natl. Acad. Sci. USA 106, 5264–5269 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Hoffmann, L.A. et al. TNFRSF1A R92Q mutation in association with a multiple sclerosis-like demyelinating syndrome. Neurology 70, 1155–1156 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Kumpfel, T. et al. Late-onset tumor necrosis factor receptor-associated periodic syndrome in multiple sclerosis patients carrying the TNFRSF1A R92Q mutation. Arthritis Rheum. 56, 2774–2783 (2007).

    Article  Google Scholar 

  18. 18

    Aksentijevich, I. et al. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am. J. Hum. Genet. 69, 301–314 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Wildemann, B. et al. The tumor-necrosis-factor-associated periodic syndrome, the brain, and tumor-necrosis-factor-alpha antagonists. Neurology 68, 1742–1744 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Jenne, D.E. et al. The low-penetrance R92Q mutation of the tumour necrosis factor superfamily 1A gene is neither a major risk factor for Wegener's granulomatosis nor multiple sclerosis. Ann. Rheum. Dis. 66, 1266–1267 (2007).

    Article  Google Scholar 

  21. 21

    Pedchenko, T.V., Park, G.Y., Joo, M., Blackwell, T.S. & Christman, J.W. Inducible binding of PU.1 and interacting proteins to the Toll-like receptor 4 promoter during endotoxemia. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L429–L437 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Lee, C.H. et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med. 203, 63–72 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Hassan, N.J. et al. CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76. Mol. Cell. Biol. 26, 6727–6738 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Castro, M.A. et al. Extracellular isoforms of CD6 generated by alternative splicing regulate targeting of CD6 to the immunological synapse. J. Immunol. 178, 4351–4361 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Hafler, D.A. et al. Immunologic responses of progressive multiple sclerosis patients treated with an anti-T-cell monoclonal antibody, anti-T12. Neurology 36, 777–784 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Sarrias, M.R. et al. CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc. Natl. Acad. Sci. USA 104, 11724–11729 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40, 395–402 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Graham, R.R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Raychaudhuri, S. et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40, 1216–1223 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Musone, S.L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40, 1062–1064 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  34. 34

    van Baarsen, L.G. et al. A subtype of multiple sclerosis defined by an activated immune defense program. Genes Immun. 7, 522–531 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Degre, M., Dahl, H. & Vandvik, B. Interferon in the serum and cerebrospinal fluid in patients with multiple sclerosis and other neurological disorders. Acta Neurol. Scand. 53, 152–160 (1976).

    CAS  Article  Google Scholar 

  36. 36

    Stranger, B.E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005).

    Article  Google Scholar 

  37. 37

    Greenberg, S.A. et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57, 664–678 (2005).

    CAS  Article  Google Scholar 

  38. 38

    van der Pouw Kraan, T.C. et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann. Rheum. Dis. 66, 1008–1014 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  Article  Google Scholar 

  40. 40

    van Oosten, B.W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    CAS  Article  Google Scholar 

  41. 41

    The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  42. 42

    Siddiqui, M.A. & Scott, L.J. Spotlight on infliximab in Crohn disease and rheumatoid arthritis. BioDrugs 20, 67–70 (2006).

    Article  Google Scholar 

  43. 43

    De Jager, P.L. et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70, 1113–1118 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS  Article  Google Scholar 

  45. 45

    McDonald, W.I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Bienias, J.L., Beckett, L.A., Bennett, D.A., Wilson, R.S. & Evans, D.A. Design of the Chicago Health and Aging Project (CHAP). J. Alzheimers Dis. 5, 349–355 (2003).

    Article  Google Scholar 

  48. 48

    Gauthier, S.A., Glanz, B.I., Mandel, M. & Weiner, H.L. A model for the comprehensive investigation of a chronic autoimmune disease: the multiple sclerosis CLIMB study. Autoimmun. Rev. 5, 532–536 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Miller, D., Barkhof, F., Montalban, X., Thompson, A. & Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management. Lancet Neurol. 4, 341–348 (2005).

    CAS  Article  Google Scholar 

Download references


P.L.D. is a Harry Weaver Neuroscience Scholar Award of the National MS Society (NMSS); he is also a William C. Fowler Scholar in Multiple Sclerosis Research and is supported by a National Institute of Neurological Disorders and Stroke (NINDS) K08 grant, NS46341. D.A.H. is a Jacob Javits Scholar of the US National Institutes of Health; he is also supported by NINDS P01 AI039671, R01 NS049477, R01NS046630, NMSS Collaborative MS Research Award and NMSS RG3567A. The International MS Genetics Consortium is supported by R01NS049477. L.P. is supported by an NMSS fellowship grant (FG1665-A-1). The genome-wide data on the BWH subjects and the RNA data on MS and CIS subjects from the CLIMB study were generated as part of a collaboration with Affymetrix, Inc. We thank the Myocardial Infarction Genetics Consortium (MIGen) study for the use of their genotype data as control data in our study. The MIGen study was funded by the US National Institutes of Health and National Heart, Lung, and Blood Institute's STAMPEED genomics research program and a grant from the National Center for Research Resources. We acknowledge use of genotype data from the British 1958 Birth Cohort DNA collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. We thank R. Lincoln and R. Gomez for expert specimen management at UCSF as well as A. Santaniello for database management. We thank the Accelerated Cure Project for its work in collecting samples from subjects with MS and for making these samples available to MS investigators. We also thank the following clinicians for contributing to sample collection efforts: Accelerated Cure project, E. Frohman, B. Greenberg, P. Riskind, S. Sadiq, B. Thrower and T. Vollmer; Washington University, B.J. Parks and R.T. Naismith. Finally, we thank the Brigham & Women's Hospital PhenoGenetic Project for providing DNA samples from healthy subjects that were used in the replication effort of this study.

Author information





P.L.D., D.A.H., S.L.H., P.M.M. and J.R.O. designed the study. P.L.D. and J.R.O. wrote the manuscript. P.I.W.d.B., P.L.D., S.R., M.J.D., D.T., J.W., S.E.B. and X.J. performed analytical work. P.I.W.d.B., X.J. and M.J.D. developed the meta-analysis method while S.R. developed the subject matching algorithm. L.O. and P.L.D. performed the quality control analysis and quantitative trait analysis of the RNA from MS PBMC samples. C.A. generated and processed genotype data for analysis. P.L.D., N.T.A., L.P., R.B., R.A.G., P.M.M., Y.N., L.K., B.U., C.P., W.L.M., D.P.S., D.E., A.H.C., A.C., S.J.S., H.L.W., S.L.H., J.R.O. and D.A.H. contributed to DNA sample collection and genetic data. J.L.M., M.A.P.-V. and J.L.H. contributed to the interpretation of the results. All authors have read and contributed to the manuscript.

Corresponding author

Correspondence to Philip L De Jager.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figure 1 (PDF 2943 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Jager, P., Jia, X., Wang, J. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41, 776–782 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing