Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice

Abstract

A large cis-regulatory landscape is a common feature of vertebrate genomes, particularly at key developmental gene loci with finely tuned expression patterns. Existing genetic tools for surveying large genomic regions of interest spanning over hundreds of kilobases are limited. Here we propose a chromosomal engineering strategy exploiting the local hopping trait of the Sleeping Beauty transposon in the mouse genome. We generated embryonic stem cells with a targeted integration of the transposon vector, carrying an enhancer-detecting lacZ reporter and loxP cassette, into the developmentally critical Pax1 gene locus, followed by efficient local transpositions, nested deletion formation and derivation of embryos by tetraploid complementation. Comparative reporter expression analysis among different insertion/deletion embryos substantially facilitated long-range cis-regulatory element mapping in the genomic neighborhood and demonstrated the potential of the transposon-based approach as a versatile tool for exploration of defined genomic intervals of functional or clinical relevance, such as disease-associated microdeletions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Distribution of LHED insertions.
Figure 3: Surveillance of the intergenic region between Nkx2-2 and Pax1.
Figure 4: Surveillance of the 3′ region of Pax1.

Similar content being viewed by others

References

  1. Kleinjan, D.A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  Google Scholar 

  2. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  Google Scholar 

  3. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  Google Scholar 

  4. Horie, K. et al. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol. Cell. Biol. 23, 9189–9207 (2003).

    Article  CAS  Google Scholar 

  5. Keng, V.W. et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat. Methods 2, 763–769 (2005).

    Article  CAS  Google Scholar 

  6. Santagati, F. et al. Identification of cis-regulatory elements in the mouse Pax9/Nkx2–9 genomic region: implication for evolutionary conserved synteny. Genetics 165, 235–242 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, W., Zhong, J., Su, B., Zhou, Y. & Wang, Y.Q. Comparison of pax1/9 locus reveals 500-myr-old syntenic block and evolutionary conserved noncoding regions. Mol. Biol. Evol. 24, 784–791 (2007).

    Article  CAS  Google Scholar 

  8. Wilm, B., Dahl, E., Peters, H., Balling, R. & Imai, K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc. Natl. Acad. Sci. USA 95, 8692–8697 (1998).

    Article  CAS  Google Scholar 

  9. Kokubu, C. et al. Undulated short-tail deletion mutation in the mouse ablates Pax1 and leads to ectopic activation of neighboring Nkx2–2 in domains that normally express Pax1. Genetics 165, 299–307 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Korzh, V. Transposons as tools for enhancer trap screens in vertebrates. Genome Biol. 8 (suppl. 1), S8 (2007).

    Article  Google Scholar 

  11. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  Google Scholar 

  12. Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105, 707–714 (1989).

    CAS  PubMed  Google Scholar 

  13. Cui, Z., Geurts, A.M., Liu, G., Kaufman, C.D. & Hackett, P.B. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J. Mol. Biol. 318, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  14. Geurts, A.M. et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8, 108–117 (2003).

    Article  CAS  Google Scholar 

  15. Ikeda, R. et al. Sleeping beauty transposase has an affinity for heterochromatin conformation. Mol. Cell. Biol. 27, 1665–1676 (2007).

    Article  CAS  Google Scholar 

  16. Devon, R.S., Porteous, D.J. & Brookes, A.J. Splinkerettes–improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 23, 1644–1645 (1995).

    Article  CAS  Google Scholar 

  17. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  18. Valenzuela, L. & Kamakaka, R.T. Chromatin insulators. Annu. Rev. Genet. 40, 107–138 (2006).

    Article  CAS  Google Scholar 

  19. Bejerano, G., Siepel, A.C., Kent, W.J. & Haussler, D. Computational screening of conserved genomic DNA in search of functional noncoding elements. Nat. Methods 2, 535–545 (2005).

    Article  CAS  Google Scholar 

  20. Kondo, T. & Duboule, D. Breaking colinearity in the mouse HoxD complex. Cell 97, 407–417 (1999).

    Article  CAS  Google Scholar 

  21. Su, H., Wang, X. & Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nat. Genet. 24, 92–95 (2000).

    Article  CAS  Google Scholar 

  22. Bilodeau, M., Girard, S., Hebert, J. & Sauvageau, G. A retroviral strategy that efficiently creates chromosomal deletions in mammalian cells. Nat. Methods 4, 263–268 (2007).

    Article  CAS  Google Scholar 

  23. Wu, S., Ying, G., Wu, Q. & Capecchi, M.R. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39, 922–930 (2007).

    Article  CAS  Google Scholar 

  24. Wang, W. et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 105, 9290–9295 (2008).

    Article  CAS  Google Scholar 

  25. Geurts, A.M. et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet. 2, e156 (2006).

    Article  Google Scholar 

  26. Garrison, B.S., Yant, S.R., Mikkelsen, J.G. & Kay, M.A. Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol. Cell. Biol. 27, 8824–8833 (2007).

    Article  CAS  Google Scholar 

  27. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  Google Scholar 

  28. Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520–527 (2001).

    Article  CAS  Google Scholar 

  29. Saga, Y. & Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nat. Rev. Genet. 2, 835–845 (2001).

    Article  CAS  Google Scholar 

  30. Morin-Kensicki, E.M. & Eisen, J.S. Sclerotome development and peripheral nervous system segmentation in embryonic zebrafish. Development 124, 159–167 (1997).

    CAS  PubMed  Google Scholar 

  31. Menke, D.B., Guenther, C. & Kingsley, D.M. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 135, 2543–2553 (2008).

    Article  CAS  Google Scholar 

  32. Pennacchio, L.A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  Google Scholar 

  33. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  34. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  Google Scholar 

  35. Lee, J.A. & Lupski, J.R. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52, 103–121 (2006).

    Article  CAS  Google Scholar 

  36. Valancius, V. & Smithies, O. Double-strand gap repair in a mammalian gene targeting reaction. Mol. Cell. Biol. 11, 4389–4397 (1991).

    Article  CAS  Google Scholar 

  37. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  38. Inoue, N., Ikawa, M., Isotani, A. & Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238 (2005).

    Article  CAS  Google Scholar 

  39. Sasaki, H. & Hogan, B.L. Enhancer analysis of the mouse HNF-3 beta gene: regulatory elements for node/notochord and floor plate are independent and consist of multiple sub-elements. Genes Cells 1, 59–72 (1996).

    Article  CAS  Google Scholar 

  40. Watanabe, S. et al. Stable production of mutant mice from double gene converted ES cells with puromycin and neomycin. Biochem. Biophys. Res. Commun. 213, 130–137 (1995).

    Article  CAS  Google Scholar 

  41. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

  42. Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214 (2001).

    Article  CAS  Google Scholar 

  43. Schaft, J., Ashery-Padan, R., van der Hoeven, F., Gruss, P. & Stewart, A.F. Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31, 6–10 (2001).

    Article  CAS  Google Scholar 

  44. Okada, Y. et al. Complementation of placental defects and embryonic lethality by trophoblast-specific lentiviral gene transfer. Nat. Biotechnol. 25, 233–237 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Hamada for supporting the initial phase of this study; R. Jaenisch (Massachusetts Institute of Technology) for providing V6.5 ES cells; P.B. Hackett (University of Minnesota) for the pT2/HB and pCMV-SB11 plasmids; and H. Sasaki (RIKEN Center for Developmental Biology) for the pASSHsp68lacZpA plasmid. We also thank M. Kouno, K. Yae, K. Yusa and V.W. Keng for advice and technical assistance. This work was supported by grants from the New Energy and Industrial Technology Development Organization of Japan; RIKEN, the Institute of Physical and Chemical Research; and a grant-in-aid for science research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

C.K., K.H., K.I. and J.T. designed the experiments; C.K. and J.T. performed vector construction; C.K., K.H., R.I. and S.M. engineered and analyzed the mouse ES cells; Y.U. generated the knock-in mouse line; A.I. and M.Okabe generated mouse embryos by the tetraploid complementation technique; S.O. and M.Ohtsuka generated mouse embryos by pronuclear injection; C.K. and K.A. analyzed the embryos; K.I. assisted in interpretation of the embryonic data; C.K. performed database analyses; and C.K. wrote the manuscript with assistance from K.H., K.A., M.Okabe and J.T.

Corresponding authors

Correspondence to Chikara Kokubu or Junji Takeda.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Data (PDF 2195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokubu, C., Horie, K., Abe, K. et al. A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice. Nat Genet 41, 946–952 (2009). https://doi.org/10.1038/ng.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing