Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease

Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantifying layers of molecular and cellular phenotypes.

References

  1. Nicolae, D.L. et al. PLoS Genet. 6, e1000888 (2010).

    Article  Google Scholar 

  2. GTEx Consortium. Science 348, 648–660 (2015).

  3. Degner, J.F. et al. Nature 482, 390–394 (2012).

    Article  CAS  Google Scholar 

  4. McVicker, G. et al. Science 342, 747–749 (2013).

    Article  CAS  Google Scholar 

  5. Sun, W. Biometrics 68, 1–11 (2012).

    Article  Google Scholar 

  6. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J.K. Nat. Methods 12, 1061–1063 (2015).

    Article  CAS  Google Scholar 

  7. Kumasaka, N., Knights, A.J. & Gaffney, D.J. Nat. Genet. 48, 206–213 (2016).

    Article  CAS  Google Scholar 

  8. Lappalainen, T. et al. Nature 501, 506–511 (2013).

    Article  CAS  Google Scholar 

  9. Li, Y.I. et al. Science 352, 600–604 (2016).

    Article  CAS  Google Scholar 

  10. Gibbs, J.R. et al. PLoS Genet. 6, e1000952 (2010).

    Article  Google Scholar 

  11. Bell, J.T. et al. Genome Biol. 12, R10 (2011).

    Article  CAS  Google Scholar 

  12. Gutierrez-Arcelus, M. et al. eLife 2, e00523 (2013).

    Article  Google Scholar 

  13. Wu, L. et al. Nature 499, 79–82 (2013).

    Article  CAS  Google Scholar 

  14. Hause, R.J. et al. Am. J. Hum. Genet. 95, 194–208 (2014).

    Article  CAS  Google Scholar 

  15. Banovich, N.E. et al. PLoS Genet. 10, e1004663 (2014).

    Article  Google Scholar 

  16. Gutierrez-Arcelus, M. et al. PLoS Genet. 11, e1004958 (2015).

    Article  Google Scholar 

  17. Battle, A. et al. Science 347, 664–667 (2015).

    Article  CAS  Google Scholar 

  18. Cenik, C. et al. Genome Res. 25, 1610–1621 (2015).

    Article  CAS  Google Scholar 

  19. Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. & Kim, D. Nat. Rev. Genet. 16, 85–97 (2015).

    Article  CAS  Google Scholar 

  20. Vucic, E.A. et al. Genome Res. 22, 188–195 (2012).

    Article  CAS  Google Scholar 

  21. Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G. & Hacohen, N. Cell 160, 48–61 (2015).

    Article  CAS  Google Scholar 

  22. Fernandez-Banet, J. et al. Nat. Methods 13, 9–10 (2016).

    Article  CAS  Google Scholar 

  23. Kosti, I., Jain, N., Aran, D., Butte, A.J. & Sirota, M. Sci. Rep. 6, 24799 (2016).

    Article  CAS  Google Scholar 

  24. Carithers, L.J. et al. Biopreserv. Biobank. 13, 311–319 (2015).

    Article  Google Scholar 

  25. GTEx Consortium. Nature http://dx.doi.org/10.1038/nature24277 (2017).

  26. Li, X. et al. Nature http://dx.doi.org/10.1038/nature24267 (2017).

  27. Weintraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  CAS  Google Scholar 

  28. Wu, C., Wong, Y.C. & Elgin, S.C. Cell 16, 807–814 (1979).

    Article  CAS  Google Scholar 

  29. Maurano, M.T. et al. Science 337, 1190–1195 (2012).

    Article  CAS  Google Scholar 

  30. Maurano, M.T. et al. Nat. Genet. 47, 1393–1401 (2015).

    Article  CAS  Google Scholar 

  31. Neph, S. et al. Nature 489, 83–90 (2012).

    Article  CAS  Google Scholar 

  32. Bannister, A.J. & Kouzarides, T. Cell Res. 21, 381–395 (2011).

    Article  CAS  Google Scholar 

  33. Ernst, J. et al. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  34. Roadmap Epigenomics Consortium. Nature 518, 317–330 (2015).

  35. Kasowski, M. et al. Science 342, 750–752 (2013).

    Article  CAS  Google Scholar 

  36. Maurano, M.T. et al. Cell Rep. 12, 1184–1195 (2015).

    Article  CAS  Google Scholar 

  37. Pervjakova, N. et al. Epigenomics 8, 789–799 (2016).

    Article  CAS  Google Scholar 

  38. Li, E., Beard, C. & Jaenisch, R. Nature 366, 362–365 (1993).

    Article  CAS  Google Scholar 

  39. Payer, B. & Lee, J.T. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  Google Scholar 

  40. Curradi, M., Izzo, A., Badaracco, G. & Landsberger, N. Mol. Cell. Biol. 22, 3157–3173 (2002).

    Article  CAS  Google Scholar 

  41. Castel, S.E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Genome Biol. 16, 195 (2015).

    Article  Google Scholar 

  42. Zhang, R. et al. Nat. Methods 11, 51–54 (2014).

    Article  CAS  Google Scholar 

  43. Kukurba, K.R. et al. PLoS Genet. 10, e1004304 (2014).

    Article  Google Scholar 

  44. Rivas, M.A. et al. Science 348, 666–669 (2015).

    Article  CAS  Google Scholar 

  45. Baran, Y. et al. Genome Res. 25, 927–936 (2015).

    Article  CAS  Google Scholar 

  46. Pirinen, M. et al. Bioinformatics 31, 2497–2504 (2015).

    Article  CAS  Google Scholar 

  47. Dominissini, D. et al. Nature 485, 201–206 (2012).

    Article  CAS  Google Scholar 

  48. Meyer, K.D. et al. Cell 149, 1635–1646 (2012).

    Article  CAS  Google Scholar 

  49. Ciaccio, M.F., Wagner, J.P., Chuu, C.P., Lauffenburger, D.A. & Jones, R.B. Nat. Methods 7, 148–155 (2010).

    Article  CAS  Google Scholar 

  50. O'Huallachain, M., Karczewski, K.J., Weissman, S.M., Urban, A.E. & Snyder, M.P. Proc. Natl. Acad. Sci. USA 109, 18018–18023 (2012).

    Article  CAS  Google Scholar 

  51. Haycock, P.C. et al. Br. Med. J. 349, g4227 (2014).

    Article  Google Scholar 

  52. Stone, R.C. et al. PLoS Genet. 12, e1006144 (2016).

    Article  Google Scholar 

  53. Kibriya, M.G., Jasmine, F., Roy, S., Ahsan, H. & Pierce, B. Cancer Epidemiol. Biomarkers Prev. 23, 2667–2672 (2014).

    Article  CAS  Google Scholar 

  54. Pierce, B.L. et al. Int. J. Mol. Epidemiol. Genet. 7, 18–23 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kibriya, M.G., Jasmine, F., Roy, S., Ahsan, H. & Pierce, B.L. PLoS One 11, e0155548 (2016).

    Article  Google Scholar 

  56. Jagannathan, S. & Bradley, R.K. Genome Res. 26, 1639–1650 (2016).

    Article  CAS  Google Scholar 

  57. Gamazon, E.R. et al. Nat. Genet. 47, 1091–1098 (2015).

    Article  CAS  Google Scholar 

  58. Nica, A.C. et al. PLoS Genet. 6, e1000895 (2010).

    Article  Google Scholar 

  59. Hormozdiari, F. et al. Am. J. Hum. Genet. 99, 1245–1260 003 (2016).

    Article  CAS  Google Scholar 

  60. Civelek, M. & Lusis, A.J. Nat. Rev. Genet. 15, 34–48 (2014).

    Article  CAS  Google Scholar 

  61. Parikshak, N.N., Gandal, M.J. & Geschwind, D.H. Nat. Rev. Genet. 16, 441–458 (2015).

    Article  CAS  Google Scholar 

  62. Zhu, J. et al. PLoS Biol. 10, e1001301 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Genotype-Tissue Expression (GTEx) project was supported by the Common Fund of the Office of the Director of the US National Institutes of Health (NIH; see URLs). Additional funds were provided by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), National Heart, Lung, and Blood Institute (NHLBI), National Institute on Drug Abuse (NIDA), National Institute of Mental Health (NIMH), and National Institute of Neurological Disorders and Stroke (NINDS). Donors were enrolled at Biospecimen Source Sites funded by Leidos Biomedical. Leidos subcontracts to the National Disease Research Interchange (10XS170) and the Roswell Park Cancer Institute (10XS171). The LDACC was funded through a contract (HHSN268201000029C) to the Broad Institute. Biorepository operations were funded through a Leidos subcontract to the Van Andel Research Institute (10ST1035). Additional data repository and project management were provided by Leidos (HHSN261200800001E). The Brain Bank was supported by a supplement to University of Miami grant DA006227. E.K.T. is supported by a Hewlett-Packard Stanford Graduate Fellowship and a doctoral scholarship from the Natural Science and Engineering Council of Canada. NIH grant U01MH104393 supported A.P.F., K.D.H., L.F.R., and P.F.H. NIH grant U01HG007598 supported B.E.S. NIH grant U01HG007599 supported J.A.S. NIH grant U01HG007593 supported J.B.L. and S.B.M. NIH grant U01HG007591 supported J.M.A. NIH grant U01HG007610 supported M.K. NIH grant U01HG007601 supported B.L.P. NIH grant U01HL131042 supported M.P.S. and H.T.

Author information

Authors and Affiliations

Consortia

Contributions

All authors contributed to study design. L.E.B., R.H., M.H., C.J., M.J., G.K., W.F.L., J.T.L., A.M., B. Mestichelli, K.M., B.R., M.S., S.S., J.A.T., G.W., M. Washington, J.W., J.B., B.A.F., B.M.G., E.K., R. Kumar, M.M., M.T. Moser, S.D.J., R.G.M., D.C.R., D.R.V., D.A.D., and D.C.M. were part of the biospecimen collection group. S.E.G., P.G., S.K., A.R.L., C.M., H.M.M., A.R., J.P.S., and S.V. were NIH program management. K.D.H., P.F.H., L.F.R., L.H., Y.L., B. Molinie, Y.P., N.R., L.W., N.V.W., M.C., E.T.G., Q.L., S. Linder, R.Z., K.S.S., E.K.T., L.S.C., K.D., J.A.D., F.J., M.G.K., L.J., S. Lin, M. Wang, R.J., X.L., J.C., D.B., M.D., J.H., E.H., A.J., R. Kaul, K.L., M.T. Maurano, J.N., F.J.N., R.S., M.S.F., C.L., M.O., A.S., F.W., J.M.A., A.P.F., J.B.L., B.L.P., J.A.S., H.T., K.G.A., M.K., M.P.S., S.B.M., and B.E.S. were part of the eGTEx project working group. The writing group included E.K.T., J.M.A., M.T. Maurano, H.T., M.S., S.V., R. Kaul, J.A.S., L.F.R., B.L.P., H.M.M., K.G.A., M.K., S.B.M., and B.E.S. and was led by K.G.A., M.K., M.P.S., S.B.M., and B.E.S.

Corresponding authors

Correspondence to Barbara E Stranger, Kristin G Ardlie, Manolis Kellis, Michael P Snyder or Stephen B Montgomery.

Ethics declarations

Competing interests

M.P.S. is a cofounder of Personalis and Q bio and is on the scientific advisory boards of Personalis, Epinomics, and Genapsys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet 49, 1664–1670 (2017). https://doi.org/10.1038/ng.3969

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3969

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research