By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


European Nucleotide Archive

Gene Expression Omnibus


  1. 1.

    et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

  2. 2.

    et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

  3. 3.

    & The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

  4. 4.

    , & Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

  5. 5.

    , & Expression quantitative trait locus analysis for translational medicine. Genome Med. 7, 60 (2015).

  6. 6.

    et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

  7. 7.

    et al. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).

  8. 8.

    et al. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat. Neurosci. 19, 1123–1130 (2016).

  9. 9.

    & Comparative primate genomics: emerging patterns of genome content and dynamics. Nat. Rev. Genet. 15, 347–359 (2014).

  10. 10.

    et al. Systems biology of the vervet monkey. ILAR J. 54, 122–143 (2013).

  11. 11.

    et al. Sequencing strategies and characterization of 721 vervet monkey genomes for future genetic analyses of medically relevant traits. BMC Biol. 13, 41 (2015).

  12. 12.

    et al. Identification of brain transcriptional variation reproduced in peripheral blood: an approach for mapping brain expression traits. Hum. Mol. Genet. 18, 4415–4427 (2009).

  13. 13.

    et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet. 44, 552–561 (2012).

  14. 14.

    et al. The genome of the vervet (Chlorocebus aethiopssabaeus). Genome Res. 25, 1921–1933 (2015).

  15. 15.

    , , & Genetic approaches to hypothalamic–pituitary–adrenal axis regulation. Neuropsychopharmacology 41, 245–260 (2016).

  16. 16.

    , & Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J. Endocrinol. 226, T67–T83 (2015).

  17. 17.

    , , & Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (McGraw-Hill Education/Medical, 2015).

  18. 18.

    , , , & Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb. Cortex 17, 2312–2321 (2007).

  19. 19.

    & CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211–2212 (2013).

  20. 20.

    et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

  21. 21.

    & Comprehensive investigation of temporal and autism-associated cell type composition–dependent and independent gene expression changes in human brains. Sci. Rep. 7, 4121 (2017).

  22. 22.

    & Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).

  23. 23.

    et al. Gene co-expression network connectivity is an important determinant of selective constraint. PLoS Genet. 13, e1006402 (2017).

  24. 24.

    , , & Testing hypotheses on a tree: new error rates and controlling strategies. Preprint at (2017).

  25. 25.

    et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

  26. 26.

    et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

  27. 27.

    , , , & The genetic architecture of gene expression levels in wild baboons. eLife 4, e04729 (2015).

  28. 28.

    et al. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat. Neurosci. 19, 494–503 (2016).

  29. 29.

    et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

  30. 30.

    et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  31. 31.

    et al. The frequent evolutionary birth and death of functional promoters in mouse and human. Genome Res. 25, 1546–1557 (2015).

  32. 32.

    , , & Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals. eLife 5, e14228 (2016).

  33. 33.

    et al. Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians. PLoS Genet. 10, e1004818 (2014).

  34. 34.

    et al. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J. Neurosci. 29, 2867–2875 (2009).

  35. 35.

    & Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 22, 5–7 (2015).

  36. 36.

    & lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

  37. 37.

    et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

  38. 38.

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  39. 39.

    et al. Imputing gene expression in uncollected tissues within and beyond GTEx. Am. J. Hum. Genet. 98, 697–708 (2016).

  40. 40.

    et al. Connexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J. Neurosci. 29, 4736–4749 (2009).

  41. 41.

    et al. Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science 262, 2039–2042 (1993).

  42. 42.

    et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32, 316–320 (2002).

  43. 43.

    et al. Small heat-shock protein 22 mutated in autosomal dominant Charcot–Marie–Tooth disease type 2L. Hum. Genet. 116, 222–224 (2005).

  44. 44.

    et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

  45. 45.

    et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

  46. 46.

    et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol. 12, 624–630 (2011).

  47. 47.

    , , & Differences in mucosal gene expression in the colon of two inbred mouse strains after colonization with commensal gut bacteria. PLoS One 8, e72317 (2013).

  48. 48.

    et al. Cellular transcriptional coactivator RanBP10 and herpes simplex virus 1 ICP0 interact and synergistically promote viral gene expression and replication. J. Virol. 90, 3173–3186 (2016).

  49. 49.

    et al. The RAR1 interactor SGT1, an essential component of R gene–triggered disease resistance. Science 295, 2073–2076 (2002).

  50. 50.

    , , , & A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497–503 (2007).

  51. 51.

    et al. A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet. 8, e1002480 (2012).

  52. 52.

    et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

  53. 53.

    et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

  54. 54.

    , & HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

  55. 55.

    , & edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

  56. 56.

    , & Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).

  57. 57.

    , , , & MCMC segregation and linkage analysis. Genet. Epidemiol. 14, 1011–1016 (1997).

  58. 58.

    et al. A genetic linkage map of the vervet monkey (Chlorocebus aethiops sabaeus). Mamm. Genome 18, 347–360 (2007).

  59. 59.

    et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

  60. 60.

    , , , & Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

  61. 61.

    , , & Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet. Epidemiol. 40, 45–56 (2016).

  62. 62.

    An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751–754 (1986).

  63. 63.

    & Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

  64. 64.

    & Selective inference on multiple families of hypotheses. J. R. Stat. Soc. B 76, 297–318 (2014).

  65. 65.

    , , & TreeQTL: hierarchical error control for eQTL findings. Bioinformatics 32, 2556–2558 (2016).

  66. 66.

    et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am. J. Hum. Genet. 98, 653–666 (2016).

Download references


We thank S. Groman for assistance with tissue resources; T. Chavanne, K. Finnie, M. Long, J. Gardin and D. Swaim for technical assistance with necropsies and tissue collections; and M. Vermunt for sharing rhesus macaque epigenetic data. This work was supported by the following grants, all from the US National Institutes of Health: U54HG00307907 (to R.K.W.); P40RR019963/OD010965 (to J.R.K.); R01RR016300/OD010980 (to N.B.F.); R37MH060233 (to D. Geschwind); UL1DE019580 (to R. Bilder); PL1NS062410 (to C. Evans); RL1MH083270 (to J.D.J.); P30NS062691 (to N.B.F. and G.C.); and R01MH101782 (to C.S. and E.E.). R.N., B.L.A. and P.F. acknowledge support from the Wellcome Trust. P.F., B.L.A. and R.N. acknowledge support from the Wellcome Trust (grant WT108749/Z/15/Z) and the European Molecular Biology Laboratory. E.S.W. was supported by an EMBO Advanced Fellowship (aALTF1672-2014). A.E.F. was supported by US National Institutes of Health award T32MH073526. Data were generated as part of the CommonMind Consortium supported by funding from Takeda Pharmaceuticals Company, F. Hoffman-La Roche and US National Institutes of Health grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1MH-075916, P50M096891, P50MH084053S1, R37MH057881 and R37MH057881S1, HHSN271201300031C, AG02219, AG05138 and MH06692. Brain tissue for the study was obtained from the following brain bank collections: the Mount Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer's Disease Core Center, the University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories, and the National Institute of Mental Health (NIMH) Human Brain Collection Core. CMC Leadership: P. Sklar, J. Buxbaum (Icahn School of Medicine at Mount Sinai), B. Devlin, D. Lewis (University of Pittsburgh), R. Gur, C.-G. Hahn (University of Pennsylvania), K. Hirai, H. Toyoshiba (Takeda Pharmaceuticals Company), E. Domenici, L. Essioux (F. Hoffman-La Roche), L. Mangravite, M. Peters (Sage Bionetworks), T. Lehner, B. Lipska (NIMH).

Author information

Author notes

    • Yu S Huang
    • , Vasily Ramensky
    • , Christopher A Schmitt
    • , Richard K Wilson
    •  & J David Jentsch

    Present addresses: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.S.H.), Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation (V.R.), Department of Anthropology, Boston University, Boston, Massachusetts, USA (C.A.S.), Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA (R.K.W.) and Department of Psychology, Binghamton University, Binghamton, New York, USA (J.D.J.).


  1. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.

    • Anna J Jasinska
    • , Susan K Service
    • , Rita M Cantor
    • , Oi-Wa Choi
    • , Joseph DeYoung
    • , Lynn A Fairbanks
    • , Scott Fears
    • , Yu S Huang
    • , Vasily Ramensky
    • , Christopher A Schmitt
    • , Giovanni Coppola
    •  & Nelson B Freimer
  2. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.

    • Anna J Jasinska
  3. Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, USA.

    • Ivette Zelaya
  4. Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

    • Christine B Peterson
  5. Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA.

    • Rita M Cantor
    • , Eleazar Eskin
    •  & Nelson B Freimer
  6. Department of Computer Science, University of California, Los Angeles, Los Angeles, California, USA.

    • Eleazar Eskin
  7. Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, California, USA.

    • Allison E Furterer
  8. Wellcome Trust Sanger Institute, Hinxton, UK.

    • Hannes Svardal
  9. Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

    • Matthew J Jorgensen
    •  & Jay R Kaplan
  10. University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK.

    • Diego Villar
  11. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK.

    • Bronwen L Aken
    • , Paul Flicek
    • , Rishi Nag
    •  & Emily S Wong
  12. South Texas Diabetes and Obesity Institute, UTHSCSA/UTRGV, Brownsville, Texas, USA.

    • John Blangero
    •  & Thomas D Dyer
  13. Faculty of Industrial Engineering and Management, Technion, Haifa, Israel.

    • Marina Bogomolov
  14. Department of Statistics and Operation Research, Tel Aviv University, Tel Aviv, Israel.

    • Yoav Benjamini
  15. Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.

    • George M Weinstock
  16. Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

    • Ken Dewar
  17. Department of Biomedical Data Science, Stanford University, Stanford, California, USA.

    • Chiara Sabatti
  18. Department of Statistics, Stanford University, Stanford, California, USA.

    • Chiara Sabatti
  19. McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA.

    • Richard K Wilson
    •  & Wesley Warren
  20. Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.

    • J David Jentsch
  21. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.

    • J David Jentsch
    •  & Roger P Woods
  22. Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.

    • Giovanni Coppola
    •  & Roger P Woods


  1. Search for Anna J Jasinska in:

  2. Search for Ivette Zelaya in:

  3. Search for Susan K Service in:

  4. Search for Christine B Peterson in:

  5. Search for Rita M Cantor in:

  6. Search for Oi-Wa Choi in:

  7. Search for Joseph DeYoung in:

  8. Search for Eleazar Eskin in:

  9. Search for Lynn A Fairbanks in:

  10. Search for Scott Fears in:

  11. Search for Allison E Furterer in:

  12. Search for Yu S Huang in:

  13. Search for Vasily Ramensky in:

  14. Search for Christopher A Schmitt in:

  15. Search for Hannes Svardal in:

  16. Search for Matthew J Jorgensen in:

  17. Search for Jay R Kaplan in:

  18. Search for Diego Villar in:

  19. Search for Bronwen L Aken in:

  20. Search for Paul Flicek in:

  21. Search for Rishi Nag in:

  22. Search for Emily S Wong in:

  23. Search for John Blangero in:

  24. Search for Thomas D Dyer in:

  25. Search for Marina Bogomolov in:

  26. Search for Yoav Benjamini in:

  27. Search for George M Weinstock in:

  28. Search for Ken Dewar in:

  29. Search for Chiara Sabatti in:

  30. Search for Richard K Wilson in:

  31. Search for J David Jentsch in:

  32. Search for Wesley Warren in:

  33. Search for Giovanni Coppola in:

  34. Search for Roger P Woods in:

  35. Search for Nelson B Freimer in:


A.J.J., J.R.K., G.M.W., K.D., R.K.W., J.D.J., W.W., R.P.W. and N.B.F. designed the study. A.J.J., I.Z., O.-W.C., J.D., L.A.F., S.F., A.E.F., Y.S.H., V.R., C.A.S., J.D.J., G.C. and R.P.W. produced the data. A.J.J., I.Z., S.K.S., C.B.P., R.M.C., E.E., L.A.F., S.F., Y.S.H., V.R., C.A.S., H.S., D.V., B.L.A., P.F., R.N., E.S.W., J.B., T.D.D., M.B., Y.B., C.S. and G.C. analyzed the data. O.-W.C., J.D. and M.J.J. managed data and samples. A.J.J., S.K.S. and N.B.F. wrote the manuscript. All authors reviewed the final draft.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Nelson B Freimer.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–12, Supplementary Tables 1, 2, 4–6 and 10–24, and Supplementary Note

  2. 2.

    Life Sciences Reporting Summary

Excel files

  1. 1.

    Supplementary Table 3

    Genes with high expression in one of the seven tissues evaluated with RNA-seq.

  2. 2.

    Supplementary Table 7

    Genes in the top or bottom 10% of loadings on PC1–PC3.

  3. 3.

    Supplementary Table 8

    Genes in the top or bottom 10% of loadings on PC1 for caudate and BA46.

  4. 4.

    Supplementary Table 9

    Genes with a significant age effect from either ANOVA or linear regression.

  5. 5.

    Supplementary Data 1

    Listing of all 22,184 probes on the HumanRef-8 v2 array and indicators for different probe filtering criteria.

  6. 6.

    Supplementary Data 2

    Estimates of heritability for 6,018 probes that passed filtering criteria described in Supplementary Table 1.

  7. 7.

    Supplementary Data 3

    All significant probe–SNP combinations (at Bonferroni thresholds) from the analysis of microarray gene expression.

  8. 8.

    Supplementary Data 4

    All significant gene–SNP combinations (at Bonferroni thresholds) from the analysis of RNA-seq expression data.

About this article

Publication history






Further reading