Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries


Neuroblastoma is a tumor of the peripheral sympathetic nervous system1, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Super-enhancer landscape identifies various CRCs and identities in neuroblastoma cell lines.
Figure 2: Different identity of neuroblastoma primary tumors and impact of chemotherapy on cell identity.
Figure 3: PHOX2B, HAND2 and GATA3 are master TFs defining the super-enhancer (SE) landscape of noradrenergic neuroblastoma.
Figure 4: PHOX2B is critical for the growth of noradrenergic neuroblastoma cells.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. Matthay, K.K. et al. Neuroblastoma. Nat. Rev. Dis. Primers 2, 16078 (2016).

    Article  Google Scholar 

  2. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E. & Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    Article  CAS  Google Scholar 

  3. Mossé, Y.P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    Article  Google Scholar 

  4. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  Google Scholar 

  5. George, R.E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    Article  CAS  Google Scholar 

  6. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    Article  CAS  Google Scholar 

  7. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    Article  CAS  Google Scholar 

  8. Valentijn, L.J. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 47, 1411–1414 (2015).

    Article  CAS  Google Scholar 

  9. Saint-André, V. et al. Models of human core transcriptional regulatory circuitries. Genome Res. 26, 385–396 (2016).

    Article  Google Scholar 

  10. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  Google Scholar 

  11. Thomas, S. et al. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum. Mol. Genet. 17, 3411–3425 (2008).

    Article  CAS  Google Scholar 

  12. Whyte, W.A. et al. Master transcription factors and Mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  Google Scholar 

  13. Ross, R.A., Spengler, B.A. & Biedler, J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. Natl. Cancer Inst. 71, 741–747 (1983).

    CAS  Google Scholar 

  14. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    Article  CAS  Google Scholar 

  15. Oldridge, D.A. et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528, 418–421 (2015).

    Article  CAS  Google Scholar 

  16. Rohrer, H. Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur. J. Neurosci. 34, 1563–1573 (2011).

    Article  Google Scholar 

  17. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  CAS  Google Scholar 

  18. Flora, A. et al. SP proteins and PHOX2B regulate the expression of the human PHOX2a gene. J. Neurosci. 21, 7037–7045 (2001).

    Article  CAS  Google Scholar 

  19. Lin, C.Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 16, 133 (2015).

    Article  CAS  Google Scholar 

  21. Wakamatsu, Y., Watanabe, Y., Nakamura, H. & Kondoh, H. Regulation of the neural crest cell fate by N-MYC: promotion of ventral migration and neuronal differentiation. Development 124, 1953–1962 (1997).

    CAS  PubMed  Google Scholar 

  22. Schramm, A. et al. Mutational dynamics between primary and relapse neuroblastomas. Nat. Genet. 47, 872–877 (2015).

    Article  CAS  Google Scholar 

  23. Reiff, T. et al. Neuroblastoma Phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J. Neurosci. 30, 905–915 (2010).

    Article  CAS  Google Scholar 

  24. Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).

    Article  CAS  Google Scholar 

  25. Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004).

    Article  CAS  Google Scholar 

  26. Mosse, Y.P. et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet. 75, 727–730 (2004).

    Article  CAS  Google Scholar 

  27. Coppola, E., d'Autréaux, F., Rijli, F.M. & Brunet, J.-F. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 137, 4211–4220 (2010).

    Article  CAS  Google Scholar 

  28. Ke, X.-X. et al. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol. Lett. 9, 2507–2514 (2015).

    Article  CAS  Google Scholar 

  29. Garraway, L.A. & Sellers, W.R. Lineage dependency and lineage-survival oncogenes in human cancer. Nat. Rev. Cancer 6, 593–602 (2006).

    Article  CAS  Google Scholar 

  30. Schleiermacher, G. et al. Combined 24-color karyotyping and comparative genomic hybridization analysis indicates predominant rearrangements of early replicating chromosome regions in neuroblastoma. Cancer Genet. Cytogenet. 141, 32–42 (2003).

    Article  CAS  Google Scholar 

  31. Boeva, V. et al. Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 27, 268–269 (2011).

    Article  CAS  Google Scholar 

  32. Etchevers, H. Primary culture of chick, mouse or human neural crest cells. Nat. Protoc. 6, 1568–1577 (2011).

    Article  CAS  Google Scholar 

  33. Monterrubio, C. et al. Targeted drug distribution in tumor extracellular fluid of GD2-expressing neuroblastoma patient-derived xenografts using SN-38-loaded nanoparticles conjugated to the monoclonal antibody 3F8. J. Control. Release 255, 108–119 (2017).

    Article  CAS  Google Scholar 

  34. Vassal, G. et al. Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. Br. J. Cancer 74, 537–545 (1996).

    Article  CAS  Google Scholar 

  35. Bettan-Renaud, L., Bayle, C., Teyssier, J.R. & Benard, J. Stability of phenotypic and genotypic traits during the establishment of a human neuroblastoma cell line, IGR-N-835. Int. J. Cancer 44, 460–466 (1989).

    Article  CAS  Google Scholar 

  36. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  37. Ashoor, H. et al. HMCan: a method for detecting chromatin modifications in cancer samples using ChIP–seq data. Bioinformatics 29, 2979–2986 (2013).

    Article  CAS  Google Scholar 

  38. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  39. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  Google Scholar 

  40. Rao, S.S.P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  Google Scholar 

  41. Herrmann, C., Van de Sande, B., Potier, D. & Aerts, S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res. 40, e114 (2012).

    Article  CAS  Google Scholar 

  42. Medina-Rivera, A. et al. RSAT 2015: Regulatory Sequence Analysis Tools. Nucleic Acids Res. 43 (W1), W50–W46 (2015).

    Article  CAS  Google Scholar 

  43. Wiederschain, D. et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8, 498–504 (2009).

    Article  CAS  Google Scholar 

  44. Franken, N.A.P., Rodermond, H.M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    Article  CAS  Google Scholar 

Download references


We are grateful to M. Ponzoni (IRCCS Istituto Giannina Gaslini), M. Schwab (German Cancer Research Center), J. Couturier (Institut Curie) and R. Versteeg (University of Amsterdam) for providing neuroblastoma cell lines. We thank F. Tirode and C. Kamoun for help with RNA-seq analysis and alignment of NGS data, respectively; O. Blanchard for help in cell culture experiments; and M. Caly for PHOX2B immunohistochemistry. We are grateful to the animal facilities team, the Experimental Pathology Department and the Plateforme Génomique of Institut Curie. We thank N. Clément, T. Adam-de-Beaumais and B. Mallon for their help in the identification of neuroblastoma diagnosis–relapse pairs and V. Bernard for pairs validation. We thank V. Saint-André for scientific discussion, J. Maliash-Planchon and the Unité de Génétique Somatique for preparation of patient samples. We thank D. Figarella-Branger (BB-033-00097, CRB AP-HM, CRB TBM, AC-2013-1786), M. Clapisson (CRB Centre Léon Bérard, AC-2008-101), O. Minckes, C. Blanc-Fournier and N. Rousseau (CHU, Tumorothèque de Caen Basse Normandie) for providing tumor patient samples. This work was supported by grants from Institut Curie, INSERM, the Ligue Nationale contre le Cancer (Equipe Labellisée), the Société Française de Lutte contre les Cancers et les Leucémies de l'Enfant et l'Adolescent, the Institut National du Cancer (PRT-K14-061 and PHRC IC 2007-2009) and by the following associations: Association Hubert Gouin “Enfance and Cancer,” Les Bagouz à Manon, les amis de Claire, Courir pour Mathieu, Dans les pas du Géant and Olivier Chape. The MAPPYACTS protocol is supported by the Institut National du Cancer (PHRC-K14-175), the Fondation ARC (MAPY201501241), the Société Française de Lutte contre les Cancers et les Leucémies de l'Enfant et l'Adolescent (Fondation Enfants et Santé), the Fondation AREMIG and the Association Thibault BRIET. High-throughput sequencing was performed by the ICGex NGS platform of the Institut Curie, supported by the grants ANR-10-EQPX-03 (Equipex) and ANR-10-INBS-09-08 (France Génomique Consortium) from the Agence Nationale de la Recherche (Investissements d'Avenir program); by the Canceropole Ile-de-France; and by the SiRIC-Curie program -SiRIC Grant INCa-DGOS- 4654. Biomark analysis was done using the High Throughput qPCR-HD-Genomic Paris Centre platform supported by grants from Région Ile-de-France (21016711). G.S. is supported by the Annenberg Foundation (11-385). V.B. is supported by the ATIP-Avenir Program, the ARC Foundation (ARC-RAC16002KSA-R15093KS), Worldwide Cancer Research (WCR16-1294 R16100KK) and the “Who Am I?” Laboratory of Excellence ANR-11-LABX-0071, funded by the French Government through its Investissement d′Avenir program, operated by the French National Research Agency (ANR) (ANR-11-IDEX-0005-02). H.R. is supported by the Mayent-Rothschild program from Institut Curie and the Wilhelm-Sander-Stiftung. The laboratory of T.G.P.G. is supported by LMU Munich's Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative, the Mehr LEBEN für krebskranke Kinder—Bettina-Bräu-Stiftung, the Walter Schulz Foundation, the Wilhelm-Sander-Stiftung (2016.167.1) and the German Cancer Aid (DKH-111886 and DKH-70112257).

Author information

Authors and Affiliations



V.B. and I.J.-L. conceived the study, analyzed the data and wrote the manuscript. V.B. coordinated bioinformatics analysis and I.J.-L. coordinated the whole study. C.L.-B. performed in vitro experiments and ChIP experiments and participated in the study design. A.P. generated and analyzed the doxycycline-inducible anti-PHOX2B shRNA cell lines. S.D. performed the single-cell analysis and study of chemotherapeutic agents. C.P.-E. performed the in vivo experiments and contributed in vitro experiments. V.R. performed all sequencing experiments. H.C.E. and S.T. provided hNCC cell lines and V.C. provided neuroblastoma cell lines. A.L. performed alignment of RNA-seq and ChIP-seq data. E.D.-D., B.G., D.S. and A.M.C. provided neuroblastoma PDXs. I.M. performed the reproducibility analysis. E.D. and B.D. generated the Biomark data. M.F.O. and T.G.P.G. generated lentiviral particles and provided help with lentiviral infections. S.B. coordinated and supervised sequencing experiments. G.S. participated in the study design and provided the in-house pairs of diagnosis–relapse samples with the help of E.L., G.P. and B.G. S.G.-L. participated in RNA-seq analysis. E.B. provided computational infrastructure and data storage. H.R. and T.D. provided expertise in sympathetic nervous development and TFs. I.J.-L. and O.D. provided laboratory infrastructure. I.J.-L., V.B. and O.D. provided financial support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Valentina Boeva or Isabelle Janoueix-Lerosey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22, Supplementary Tables 1, 2 and 7 and Supplementary Note. (PDF 3758 kb)

Life Sciences Reporting Summary (PDF 163 kb)

Supplementary Table 3

Characteristics of neuroblastoma and hNCC super-enhancers. Group I: all neuroblastoma cell lines with the exception of SH-EP, GIMEN, GICAN, SK-N-AS, SJNB12, SK-N-SH and CHP-212. Group II: SH-EP, GIMEN and GICAN. (XLSX 1059 kb)

Supplementary Table 4

Supervised analysis of super-enhancer (SE) scores according to MYCN status. (XLSX 22 kb)

Supplementary Table 5

Supervised analysis of super-enhancer (SE) scores according to ALK status. (XLSX 20 kb)

Supplementary Table 6

Raw Ct values measured for housekeeping genes (GAPDH, ACTG1, ACTB, RPL15) and TFs of modules 1 and 2 for single cells of the SK-N-AS, SH-EP, SH-SY5Y and SK-N-SH cell lines using the Fluidigm Biomark HD. (XLSX 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boeva, V., Louis-Brennetot, C., Peltier, A. et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet 49, 1408–1413 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer